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THE NUMBER OF REPRESENTATIONS BY A TERNARY
SUM OF TRIANGULAR NUMBERS

MINGYU KIM AND BYEONG-KWEON OH

ABSTRACT. For positive integers a, b, ¢, and an integer n, the number of
integer solutions (z,y,2) € Z3 of az(m;l) + by<y;1) + cz(Z;D =nis
denoted by t(a,b,c;n). In this article, we prove some relations between
t(a,b, c;n) and the numbers of representations of integers by some ternary
quadratic forms. In particular, we prove various conjectures given by Z.
H. Sun in [6].

1. Introduction

For a positive integer x, a non negative integer of the form T, = %

is called a triangular number. For example, 0,1,3,6,10,15,... are triangular
numbers. Since T, = T1_,, T, is a triangular number for any integer x. For
positive integers aq, as, .. .ay, a polynomial of the form

7Eal,...,ak)(xla e ,.Tk) = aflTam + a2Ta:2 + -+ aszk

is called a k-ary sum of triangular numbers. For a non negative integer n, we
define

T(ai,...,ak;n) = {(:Ul,...,xk) VAR ﬁal’.,.’ak)(xl,...,mk) = n}

and t(ay,...,ax;n) = |T(a,...,ar;n)|. One may easily show that
t(ar,...,ap;n) = |{(x1,...,21) € (Zo)* : ara+- - -+apei = Sn+ay+---+ai}|,
where Z, is the set of all odd integers. Hence t(aq,...,ax;n) is closely related

with the number of representations by some diagonal quadratic form of rank
k. For example, if £ = 3 and a; = a2 = a3 = 1, then every integer solution
(2,9, 2) of 22 + 4% + 22 = 8n + 3 is in (Z,)>. Therefore, for any positive integer
n, we have

t(1,1,1;n) = {(z,y,2) € Z° : 2% + y* + 2* = 8n + 3}| = 24H(—(8n + 3)),
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where H(—D) is the Hurwitz class number with discriminant —D. For the
further results in this direction, see [1], [2], [5] and [§].

Recently, Sun proved in [6] various relations between t(aq,...,ar;n) and
the numbers of representations of integers by some diagonal quadratic forms.
He also gave various conjectures on the relations between t(a, b, c;n) and the
numbers of representations by some ternary diagonal quadratic forms.

In this article, we consider the number ¢(a,b,c;n) of representations by a
ternary sum of triangular numbers. We show that for any positive integers a, b, ¢
such that (a,b,¢) = 1, t(a,b, c;n) is equal to the number of representations of
a subform of the ternary diagonal quadratic form axz? + by? + c22, if a + b+ ¢
is not divisible by 8, or a difference of the numbers of representations of two
ternary quadratic forms otherwise.

In Section 3, we prove all conjectures in [6] on ternary sums of triangular
numbers, which are Conjectures 6.1~6.4 and 6.7. In fact, we generalize Con-
jectures 6.1 and 6.2 in [6], and prove these generalized conjectures. Note that
Conjectures 6.5 and 6.6 in [6] are on quaternary sums of triangular numbers,
which we have a plan to treat in another paper.

An integral quadratic form f(x1,xs,...,x) of rank k is a degree 2 homo-
geneous polynomial

f(xl,.%‘g,...,l‘k) = Z AijT;T 5 (aij = Qj; EZ).
1<i,j<k
We always assume that f is positive definite, that is, the corresponding sym-
metric matrix (a;;) € Myxr(Z) is positive definite. If a;; = 0 for any i # j,
then we simply write f = {aji,...,akky. For an integer n, if the Diophan-
tine equation f(x1,22,...,25) = n has an integer solution, then we say n is
represented by f. We define

R(f,n) = {(z1,...,xz1) € ZF : f(x1,...,2) = n},

and r(f,n) = |R(f,n)|. Since we are assuming that f is positive definite, the
above set is always finite. The genus of f, denoted by gen(f), is the set of all
quadratic forms that are locally isometric to f. The number of isometry classes
in gen(f) is called the class number of f.

Any unexplained notations and terminologies on integral quadratic forms
can be found in [3] or [4].

2. Representations of ternary sums of triangular numbers

Let a,b and ¢ be positive integers such that (a,b,c¢) = 1. Throughout this
section, we assume, without loss of generality, that a is odd. We show that the
number t(a,b, ¢;n) is equal to the number of representations of a subform of
the ternary diagonal quadratic form ax? + by? + cz2, if a + b + c is not divisible
by 8, or a difference of the numbers of representations of two ternary quadratic
forms otherwise.
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Let f(z,y, 2) = ax® +by? + c2? be a ternary diagonal quadratic form. Recall
that

t(a,b,c;n) = {(x,y,2) € Z® : f(x,y,2) =8n+a+b+c, xyz=1 (mod 2)}|.
Lemma 2.1. Assume that a + b+ c is odd. For any positive integer n, we have
t(a,b,c;n) = r(f(x,z — 2y, — 22),8n+ a + b+ c).
In particular, if a = b= c (mod 4), then we have
t(a,b,c;n) =r(f(x,y,2),8n+a+b+c).

Proof. Let g(z,y,2) = f(z,z — 2y,x — 2z). Define a map ¢ : T(a,b,c;n) —
R(g,n) by ¢(z,y,2) = (z, 5%, %5%). Then one may easily show that it is a
bijective map.

Now, assume that a = b = c (mod 4). If ax? + by? + 2> =8n+a+b+c

for some integers x,y and z, then one may easily show that x,y and z are all
odd. The lemma follows directly from this. O

Lemma 2.2. Assume that S = a+ b+ ¢, both a and b are odd and c is even.
Then, for any positive integer n, we have

t(a,b,c;n)
r(f(z,y,2),8n + S) if S =2 (mod 4) and ¢ =4 (mod 8),
) r(f(z,y,y —22),8n + 5) if S =2 (mod 4) and ¢ # 4 (mod 8),
) 2r(f(z,x — 4y, 2),8n + S) if S =4 (mod 8) and ¢ =2 (mod 4),
2r(f(x,z —dy,x — 22),8n+ S) if S=4 (mod 8) and ¢ =0 (mod 4),

and if S =0 (mod 8), then
t(a,b,c;n) =r(f(x,x —2y,x —22),8n+5) —r <f(a:,y,z),2n+ i) .

Proof. Since the proof is quite similar to each other, we only provide the proof
of the fourth case, that is, the case when S = 4 (mod 8) and ¢ = 0 (mod 4).
Let g(z,y,2) = f(z,z — 4y, x — 2z). We define a map

o {(2,y,2) € (Zo)* : f(x,y,2) =8n+ 5, =y (mod 4)}
— {(2,y,2) € Z? : g(x,y,2) = 8n + S} by ¥(x,y,2) = (sc, =, IEZ) )

From the assumption, it is well defined. Conversely, assume that g(z,y,2) =
8n + S for some (z,y, z) € Z3. Since

flz 2 — 4y, 2 — 22) = aa® + b(x — 4y)? + c(x — 22)* = ax® + ba? + cx?
= S2? = S (mod 8)
and S = 4 (mod 8), the integer x is odd. Therefore, the map (z,y,2) —

(z,z — 4y, x — 2z) is an inverse map of ¢. The lemma follows from this and the
fact that

t(a,b,c;n) = 2{(,y,2) € (Zo) : f(w,y,2) =8n + S, x =y (mod 4)}].
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This completes the proof. Il

3. Sums of triangular numbers and diagonal quadratic forms

In this section, we generalize some conjectures given by Sun in [6] on the
relations between t(a, b, ¢;n) and the numbers of representations of integers by
some ternary quadratic forms, and prove these generalized conjectures.

Let f(x1,xa,...,2%) be an integral quadratic form of rank k and let n be
an integer. For a vector d = (di,...,dy) € (Z/2Z)*, we define

Ra(f,n) ={(x1,...,2x) € R(f,n) : (x1,...,2) = (d1,...,dr) (mod 2)}.
The cardinality of the above set will be denoted by rq(f,n). Note that
t(a,b,c;n) = 7‘(1’171)(@3)2 + by + e, 8n+a+b+c).
We also define
ﬁ(l’l)(azz + by?, N) = {(z,y) € R(l’l)(aosz + byz,N) cx #y (mod 4)}.

Note that if we define the cardinality of R(Ll)(ax2 + by?, N) by 77(171)((1%2 +
by?, N), then we have

r(l,l)(aﬁ + by’ , N)=2- ?(1’1)(aa:2 + by?, N).
Lemma 3.1. Let m be a positive integer.
(i) If m =1 (mod 4), then we have
27(1,0) (2 + 3y*,m) = r(lyl)(a:Q + 3y2,4m).
(ii) If m =3 (mod 4), then we have
2?"(0’1)(1‘2 +3y%,m) = r(l’l)(zz + 3y?,4m).
(iii) If m =4 (mod 8), then we have
27(0,0) (x2 + 3y2,m) = r(l’l)(xQ + 342, m).
Proof. (i) Note that the map
Ui Ro) (@ + 3y%,m) — Ry (@® + 397, 4m),

defined by 91 (x,y) = (z + 3y, —z + y), is a bijective map.
(ii) If we define a map

¢2 : R(O,l) (1.2 +3y27m) - E(l,l)(x2+3y274m) by 77[12(90&) = (1’+3y7 —x+y),

then one may easily check that it is a bijective map.
(iii) One may easily show that if we define a map

¢3 : R(O,O) (‘T2 + 3y27m> - é(l,l) (;62 + 3y2u m) by 1/’3(55, y) = (L;,ya %er) ;

then it is a bijective map. (I
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Lemma 3.2. Let a,b (a < b) be positive odd integers such that ged(a,b) = 1
and a +b=0 (mod 8). Then

(3.1) r(lyl)(axz + by, m) = 7‘(171)((1:132 + by?, 4m)
for any integer m divisible by 8 if and only if (a,b) € {(3,5),(1,7), (1,15)}.

Proof. Assume that Equation (3.1) holds for any integer m divisible by 8.
Let a + b = 2%k for some integer v > 3 and an odd integer k. Note that
1<a<?2" 1k

First, we assume u > 5. Since

a- 12+ 2"k —a)-1*=4-2"%k and 2“2k =0 (mod 8),

there exist odd integers = and y satisfying az? + (2“k — a)y? = 2“2k, which
is a contradiction.
Next, assume that v = 4. Since

a -7+ (16k —a) - 1? = 4(4k + 12a) and 4k + 12a =0 (mod 8),

there exist two odd integers z1, y; such that az?+ (16k—a)y? = 4k+12a. Thus,
4k+12a > 16k and hence k < a. Now, since a-12+(16k—a)-12 = 16k, there are
two positive odd integers xq, yo with az3+(16k—a)ys = 64k. Since 16k—a > 8k

by assumption, we have y2 = 1. Furthermore, since ar3 = a + 48k < 49a,

(x2,a) = (3,6k), (5,2k) or (7,k). Since a is odd, we have (a,b) = (1, 15) in this
case.

Finally, we assume that u = 3. Since a - 12 + (8k — a) - 12 = 8k, there are
positive odd integers x3,ys such that az? + (8k — a)y? = 32k. Hence we have

(3.2) y3 =1 and az3 = a+ 24k.

Note that if x5 = 3, then (a,b) = (3,5) and if z3 = 5, then (a,b) = (1,7).
Assume that z3 > 7, that is, 2a < k. Since a- 32 + (8k —a) - 12 = 8k + 8a, there
are two odd integers x4, y4 such that ax? + (8k — a)y? = 32k + 32a. If y? > 9,
then a + 72k — 9a < 32k + 32a, which is a contradiction to the assumption that
2a < k. Hence we have

(3.3) y2=1 and ax? = 33a + 24k.

Now, by Equations (3.2) and (3.3), we have 23 — 2% = 32. Therefore, 23 = 49,
x3 = 81, and k = 2a. which is a contradiction to the assumption that k is odd.
To prove the converse, we define three maps

X1t Ripy (322 + 5y, m) — R 1y (327 + 5y, 4m) by x1(z,y) = (2522, 3232

Xo : Ry (2% + Ty2,m) — Ry (2 + Ty?,4m) by xa(z,y) = (32572, 253 |

and

X3+ Ry (@2 +15y%,m) — Ry qy(x? + 15y, 4m) by x3(z,y) = (252, =2H0) .

One may easily show that the above three maps are all bijective. (I
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Theorem 3.3. Let a,b, ¢ be positive integers such that (a,b,c) # (1,1,1) and

ged(a,b,¢) = 1. Assume that two of three fractions g, 7, = are contained in

{1, g, 7, 15}. Then, for any positive integer n, we have
2t(a,b,c;n) = r(az®+by*+cz?, 4(8n+a+b+c))—r(az® +by?* +cz%, 8n+a+b+c).

Proof. Note that all of a,b and ¢ are odd. Furthermore, from the assumption,
one may easily show that

—a=b=c(mod8), a=-b=c(mod8) or a=b=—c (mod8).

By switching the roles of a,b and c if necessary, we may assume a = b =
—c (mod 8). Then we have

(w0 w5) (o 0 ) © £3,5), (5,3), (1,7, (7,1), (1,15), (15, 1)}.
Let

f=f(x,y,2) =az® +by* +cz* and N=8n+a+b+ec
One may easily show that if f(x,y,z) = 4N, then
(cwc2, by?, cz2) = (0,0,4),(0,4,0), (a,4,c), (4,0,0), (4,b,¢), or (4,4,4) (mod 8).
Let
2 (mod 4), zz =1 (mod 2)},
=2 (mod 4), yz =1 (mod 2)}.
Note that
r(f,4N) —r(f,N) = |A| + |B|.
Thus it is sufficient to show t(a,b,c;n) = |A| and t(a,b,c;n) = |B|. To show
the first equality, we apply Lemma 3.2 to show that
ra,n(f,N) = Z 7"(171)(ax2 + 2%, N — by?)
yEZ
_ 2 2 20y _
= Z 71,1y (ax” + ez, 4(N — by”)) = |A].
yeZ
The proof of t(a,b,c;n) = |B| is quite similar to this. This completes the
proof. O

Remark 3.4. All triples (a,b, ¢) satisfying the assumption of Theorem 3.3 are
listed in Table 1 below. The triples marked with asterisks are exactly those
that are listed in Conjecture 6.1 of [6].

Theorem 3.5. Let a,b be relatively prime positive odd integers such that one
of four fractions 37 % 37“, 3% is contained in {%, 7,15}. Then, for any positive
integer n, we have

2t(a, 3a, b;n) = 3r({a,3a,by,8n + 4a + b) — r({a, 3a,b), 4(8n + 4a + b)).
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TABLE 1

(1,1,7)*, (1,1,15)*, (3,3,5), (1,7,7)*, (3,5,5), (1,7,15)*, (1,9,15)*

(1,15,15)%, (3,5,21), (1,7,49), (1,15,25)*, (3,5,35), (3,5,45), (1,7,105)

(3,5,75), (1,15,105), (3,21,35), (1,15,225), (9,15,25), (5,21,35), (7,15, 105)

Proof. Since all the other cases can be treated in a similar manner, we only
consider the case when &= = 2 that is, (a,3a,b) = (1,3,5). One may easily
show that if 2% + 3y + 522 = 4(8n + 9), then

(2*,3y%,52%) = (0,0,4),(1,3,0),(4,0,0), (4,3,5), or (4,4,4) (mod 8).
Let

f=flx,y2) =2>+3y*> +52° and N =8n+09.

From the above observation, we have

37"(f, N) - T(fa 4N) = 3T(0,07O)(f7 4N) - T(fa 4N)

= 270,0,0)(f; 4N) = 7(1,1,0)(f, 4N) — 7(0,1,1)(f, 4N).

Therefore, it suffices to show that

2r(1,1,1)(f; N) = 27(0,0,0)(f;4N) = 7(1,1,0)(f,4N) — 7(0,1,1)(f, 4N).
Since 7(0,0,0)(f,4N) = r(f, N) and

r(f,N)=ra11)(f,N) +ra,00(f, N) +70,0,1)(f, N),

it is enough to show that

1 1
7‘(1,0,0)(f7 N) = 57’(1,1,0)(fa 4N) and T(o,o,l)(f7 N) = ET(O,Ll)(fa 4N).

To prove the first assertion, we apply (i) of Lemma 3.1 to show that

7(1,0,0)(f, N) = Z r0)(@? +3y*, N —52%)

2€Z

1
=5 2 ra,n (@ + 3y% 4(N — 52%))

2€Z

1
= 5¢(1,1,0)(f7 4N).
For the second assertion, we apply (iii) of Lemma 3.1 and Lemma 3.2 to show

that
7"(0,0,1)(f7 N) = Z 7(0,0) (352 + 3y2,N - 522)

2€7Z

1
=3 Z r(m)(mg +3y%, N — 52%)
2€Z

1
= 57’(1’1’1)(1’2 + 3y2 + 522, N)
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1
=3 Z ra1)(3y° + 5%, N — 2?)

T€Z

1
By Z ra,n(By? + 522, 4(N — 2?))

x€Z
1
= 57"(0,1,1)(fa 4N)~
This completes the proof. ([

Remark 3.6. All triples (a, 3a, b) satisfying the assumption of Theorem 3.5 are
listed in Table 2 below. Those triples marked with asterisks are exactly those
that are listed in Conjecture 6.2 of [6].

TABLE 2

(17375)*7 (]‘7377)*7 (1737 15)*7 (173721)*7 (175715)*7 (173’45)

(3,5,9)*, (1,7,21)*, (3,5,15)*, (3,7,21)*, (1,15,45), (5,9,15)

Theorem 3.7. Let (a,b,c) € {(1,2,15), (1,15,18),(1,15,30)}. For any positive
even integer n, we have

(3.4) 2t(a,b,c;n) =r(a,b,c),48n+a+b+c)) —r(a,b,c),8n +a + b+ c).
Proof. First, assume that (a,b,c) = (1,2,15). Let
f=Fflz,y 2 =2>+2y*+1522 and N =8n + 18.
One may easily show that if f(x,y,z) = 4N, then
(z*,2y°,152%) = (0,0,0),(1,0,7), or (4,0,4) (mod 8).
Hence the right-hand side of Equation (3.4) is
r(f,4N) —r(f,N) = 7‘(1,0,1)(fa 4N).

Note that
7"(1,1,1)(f7 N) = Z 7"(1,1)(952 + 15227 (N — 292))
yeL
= 2 ra,n (2 + 1522 4(N — 2y?))
yeL

= r(l,m)(xg + 8y% + 152%,4N)
= |{(z,y,2) € R(f,4N) : xz = 1(mod 2), y = 2(mod 4)}|
by Lemma 3.2. Since
{(z,y,2) € R(f,4N) : 2z = 1(mod 2), y = 0(mod 4)}|
= r(z® 4+ 32y + 1522,4N),
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it suffices to show that
(3.5) raa)(f N) = r(z® + 32y% + 152% 4N).
It is well known that
gen(fy = 42 + 4y* + 822 + 2xy) = {f1, f2, f3},

where fo = 42 +6y? +62% +dyz + 222+ 22y, f3 = 202 +6y> + 1222 +6yz + 222,
and

gen(g; = 4x® + 8y* 4+ 182 + 8yz + 4x2) = {91, 92 = 2% + 10y* + 2427},

Note that
raan(fyN) =r(a® +2(z — 2y)* + 15(z — 22)%, N) = r(g1, N).

On the other hand, the right-hand side of Equation (3.5) is
r (2 + 15y° + 322 4N)
r((Bz +y)* + 15(z + y)* + 322%,4N)
r (122® + 8y* + 162% + 18zy,2N)
= r (482° + 8y* + 162 + 36xy,2N) + r (122” + 32y* + 162° + 36zy,2N)
2r (f1,N).
Therefore, it suffices to show that for any positive even integer n = 2m,

(3.6) 2r(f1,16m + 18) = r(gy1, 16m + 18).

By the Minkowski-Siegel formula, we have

r(f1,16m + 18) + 2r(f2, 16m + 18) + r(f5, 16m + 18)
= r(g1,16m + 18) + (g, 16m + 18).

If f1(z,y,2) = 16m+18, then one may easily check that z+3y—4z = 0 (mod 8),
and if fo(z,y,2) = 16m + 18, then 2 — 6y + 2z = 0 (mod 8). If we define a map

o1 {(z,y,2) € R(f1,16m + 18) :  + 3y — 42 = 0 (mod 16)}
— {(x,y,2) € R(f2,16m + 18) : x — 6y + 22 = 0 (mod 16)}

_ (12z44y+16z —1llz—y+12z z—13y—4z
by ¢1($7y72) - ( 16 ) 16 ) 16
Furthermore, the map

b2 : {(,y,2) € R(f1,16m + 18) :  + 3y — 42 = 8 (mod 16)}
— {(x,y,2) € R(f2,16m + 18) :  — 6y + 2z = 8 (mod 16)}

), then it is a bijective map.

defined by ¢o(z,y,2) = (4z+1f2716z, 713:”129“2, 7I7111é’712z) is also bijective.
Therefore, we have

(3.7) r(f1,16m + 18) = r(fa, 16m + 18).
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Note that the above equation does not hold, in general, if n is odd. If we define
two maps

b3 : R((8,10,24),16m+18) — R(f1,16m+18) by ¢3(x,y, z) = (y+2z,y—2z,z)
and
o4 : R((2,24,40),16m + 18) — R(f3,16m + 18) by ¢4(x,y,z)=(x + 2,2y + z, —2z),
then one may easily check that both of them are bijective. Hence we have
(g2, 16m + 18) = r(¢8,10,24), 16m + 18) + r ({2, 24, 40), 16m + 18)
=r(f1,16m + 18) + r(f3, 16m + 18)

for any non negative integer m. Therefore, from the Minkowski-Siegel formula
given above, we have 2r(f, 16m + 18) = r(g1, 16m + 18) for any non negative
integer m. Equation (3.6) follows directly from this and Equation (3.7).

For the other two cases, one may easily show Equation (3.4) by replacing
N, fi, 9; and ¢; with the following data:

(1) (a,b,c) = (1,15,18). In this case, we let N = 8n + 34 and
f1 = 42 + 4y® + 722% + 2xy,
fa = 42 + 16y2 + 2222 + 14yz — 222 + 4ay,
fs = 622 4+ 16y? + 1622 — 8yz + 622 + 6z,
and
g1 = 42% + 34y® + 342% + Syz + 4wz + 4wy,  go = 1027 + 18y? + 2422,
Define
o1 {(z,y,2) € R(f1,16m + 34) : 3z + y + 42 = 0 (mod 16)}
— {(x,y,2) € R(f2,16m + 34) : 3z —y + 22 = 0 (mod 16)}

—5y—68z —5x—Ty+20z —4z+4y—16
bY¢1(x7y?Z):(z gﬁ Z’ - 1g+ Z’ 1?+1éJ Z)’

o2 {(z,y,2) € R(f1,16m + 34) : 3z + y + 42 = 8 (mod 16)}

— {(x,y,2) € R(f2,16m + 34) : 3z —y + 2z = 8 (mod 16)}
by ¢2($’ n Z) _ (9‘%751y(;52z7 3m+€1)g+4z’ 4:v741y6+162), and

b3 = R(102? 4 24y 4 7222, 16m + 34) — R(f1,16m + 34)
by ¢3(I, Y, Z) = (Zl? - 2y7l' + 2y7 Z)7

b4 : R(182% + 24y® + 4022, 16m + 34) — R(f3,16m + 34)
by ¢4($, Y, Z) = (x + 2y7 —XT+ 2z, =T - Z)
(2) (a,b,¢) = (1,15,30). In this case, we let N = 8n + 46 and

fi = 42? + 49 + 12022 + 22y,

fo = 42 + 16y> + 342° + 14yz — 222 + 4ay,
fa = 1022 + 16y* + 162% + 8yz + 10xz + 10zy,
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and
g1 = 4x? + 46y° + 4622 + 32yz + dxz + dzy, g2 = 622 + 30y% + 4022
Define
o1 {(z,y,2) € R(f1,16m + 46) : 3z —y — 42 = 0 (mod 16)}
— {(x,y,2) € R(f2,16m + 46) : 3z —y + 2z = 8 (mod 16)}

Tr—13y—4z —3 —44z —4x—4y+16
by ¢1($,y,2): ( x 16y z7 z+1y6 z’ x 1éj+ z)’

¢2: {(2,y,2) € R(f1,16m + 46) : 3z —y — 42 = 8 (mod 16)}
— {(z,y,2) € R(f2,16m + 46) : 3x —y + 22 = 0 (mod 16)}

_ (92—11y+20z 3x+4Ty+28z —4xr—4y+162z
by a(x,y,2) = ( 16 ) 6 16 ). and

}3 @ R(6x2 + 40y* 4 12022, 16m + 46) — R(f1, 16m + 46)
by ¢3(z,y,2) = (z + 2y, —x + 2y, 2),
b4 : R(242° 4 30y + 4022, 16m + 46) — R(f3,16m + 46)

by ¢u(r,y,2) = (—y — 22,2 +y,—v +y).
This completes the proof. [

Theorem 3.8. For any positive integer n such that n # 1 (mod 3), we have
(3.8) 26(1,1,27;n) = r(z® +y? + 2722, 4(8n +29)) — r(x? + 3> + 2722, 8n +29).
Proof. Let N = 8n + 29 and

f=flx,yz2) =2® 4+ 9%+ 2722,

g =g(x,y,2) = 8% + 20y* + 292 + 4yz + 8xz + Sy,

h = h(z,y,z) = 22% + 5y? + 272% + 2ay.

For any positive integer m % 1 (mod 3), we let

5 1 if m =0 (mod 3),

™2 if m=2 (mod 3).
Note that
(3.9) r(f,m) = m |{(z,y,2) € R(f,m): x =y (mod 3)}|.
Since

r(f,4N) = oy - r(2® + (v — 3y)? + 2722, 4N) = 65 - r(h,4N)
and
{(2,y,2) € R(f,4N) : y = 0 (mod 2)}|
=6y -r(z? +4(x — 3y)? + 2722, 4N) = 6 - (822 + 5y? + 272% + 4ay,4N)
— o [{(2,9,2) € R(h,AN) : 2 = 0 (mod 2)}],
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we have
(3.10) |{(z,y,2)eR(f,4N):y is odd} |=dn]|{(z,y,2) € R(h,4N):x is odd} |.
One may easily show that if (z,y,2) € R(f,4N), then
(2,9, 272%) = (0,0,4), (0, 1,3),(0,4,0), (1,0,3), (4,0,0), (4,4,4) (mod 8).
From this and Equation (3.10), the right hand side of Equation (3.8) becomes
r(f,AN) —r(f, N) = 26n [{(z,y,2) € R(h,4N) : x =1 (mod 2)}|.
On the other hand, by Equation (3.9),
t(1,1,27;n) = r(1,1,1)(f, V)
=0y {(z,y,2) e R(f,N) :x =y (mod 3), x =y =z (mod 2)}|
=6y - r(z? + (x — 6y)* + 27(z — 22)%, N) = 6x - (g, N).
Therefore, it is enough to show that
r(g,N) = [{(z,y,2) € R(h,4N) : =1 (mod 2)}|.
Now, we let
A= {(x,y,2) € R(g,N) : x =0 (mod 2)},
B ={(z,y,2) € R(h,4N) : 2 =1 (mod 2), z+ z =0 (mod 8)}.
Note that z + z = 8 (mod 16) if (z,y,2) € B. Define a map ¢ : A — B by
oz, y,2)=(x—Tz, —x —4dy+ 2z, —x — 2).
Then, one may easily show that ¢ is a bijection. Since g(z+2z,y, —2) = g(z,y, 2)
and zq is odd for any (x9,yo, 20) € R(g, N), we have
{(z,y,2) € R(g,N) : 2 =0 (mod 2)}| = [{(2,y,2) € R(g,N) : 2 =1 (mod 2)}|
and thus
r(g,N) =2|{(x,y,2) € R(g,N) : =0 (mod 2)}|.
Now, we are ready to prove the assertion. Note that if (x,y,z2) € R(h,4N)
and x =1 (mod 2), then z = t+z (mod 8). Therefore, we have

{(x,y,2) € R(h,AN) : z =1 (mod 2)}|
=2[{(z,y,2) € R(h,4N) : z =1 (mod 2), = + z =0 (mod 8)}|
= 2|B| = 2|A] = r(g, N).
This completes the proof. ([
Finally, we prove Conjecture 6.7 in [6].

Theorem 3.9. For a positive integer n, the Diophantine equation

z(r —1 -1 2(z—1
Tae (2, y,2) = (2 )+y(y2 )+6(2 ):n

has an integer solution if and only if n % 2-3?"~1 —1 (mod 327) for any positive
integer r.
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Proof. Note that T 1,6)(%,y,2) = n has an integer solution if and only if
f(x,y,2) = 2% + y? + 622 = 8n + 8 has an integer solution x,y,z such that
2yz =1 (mod 2). Since the ternary quadratic form f(z,y, z) has class number
one, it represents every integer that is locally represented (see 102.5 of [4]).
Therefore, one may easily check that f(z,y,2) = 8n+ 8 has an integer solution
if and only if n % 2-32"~! — 1 (mod 3?") for any positive integer r.

Now, assume that n is a positive integer such that n % 2-32"~! —1 (mod 3?")
for any positive integer r. Note that f(x,y, 2) = 8n + 8 has an integer solution
x,y, z such that xyz =1 (mod 2) if and only if r(f,8n + 8) — r(f,2n +2) > 0.
By the Minkowski-Siegel formula, we have

r(f,8n + 8) 2a2(f,8n+8)

r(f,2n +2) as(f,2n +2)’

where s is the local density over Z, (for details, see, for example, [3]). For
a positive integer s and a positive odd integer ¢, one may easily compute by
using the result of [7] that

2—3.27572 if s=0 (mod 2),
2 — 2(1-5)/2 if s=1(mod?2), t=1 (mod 8),
Oé2(f, QSt) = : — ( ) — ( )
2 if s=1(mod 2), t=5 (mod 8),
2-3-2005"D/2 if s=1 (mod 2), t =3 or 7 (mod 8).
Therefore, we have 2as(f,8n + 8) > aa(f,2n + 2) for any positive integer n.
This completes the proof. [
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