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GRADIENT RICCI SOLITON ON O(n)-INVARIANT

n-DIMENSIONAL SUBMANIFOLD IN Sn(1) × Sn(1)

Jong Taek Cho and Makoto Kimura

Abstract. We construct gradient Ricci solitons as n-dimensional sub-

manifolds in Sn × Sn by using solutions of some nonlinear ODE.

1. Introduction

A Ricci soliton is a natural generalization of an Einstein metric and is defined
on a Riemannian manifold (M, g) by

(1.1)
1

2
£V g + Ric−λg = 0,

where V is a vector field (the potential vector field), λ is a constant on M .
A trivial Ricci soliton is one for which V is zero or Killing, in which case
the metric is Einstein. Compact Ricci solitons are the fixed points of the
Ricci flow: ∂

∂tg = −2 Ric projected from the space of metrics onto its quotient
modulo diffeomorphisms and scalings, and often arise as blow-up limits for the
Ricci flow on compact manifolds. The Ricci soliton is said to be shrinking,
steady, and expanding according as λ > 0, λ = 0, and λ < 0 respectively.
Hamilton [11] and Ivey [12] proved that a Ricci soliton on a compact manifold
has constant curvature in dimension 2 and 3, respectively. A first non-trivial
Ricci soliton on compact manifold was given by Koiso [14]. It is known that
on a compact manifold, steady and expanding Ricci solitons are necessarily
Einstein. If the vector field V is the gradient of a potential function F , then g
is called a gradient Ricci soliton. Perelman [17] proved that any compact Ricci
soliton is the sum of a gradient and a Killing vector field. On non-compact
manifolds, there exist non gradient Ricci solitons. A gradient Ricci soliton is
called rigid if it is isometric to a quotient of N × Rk, where N is an Einstein
manifold, and f = λ

2 |x|
2 on the Euclidean factor. Petersen and Wylie [18]
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proved that all homogeneous gradient Ricci solitons are rigid. We refer to [8]
for details about Ricci solitons or gradient Ricci solitons.

Locally conformally flat Ricci solitons have been studied intensively in the
last years. Derdzinski [9] and Eminenti, La Nave and Mategazza [10] proved
that compact locally conformally flat Ricci soliton is either the standard sphere
Sn or one of its quotients. According to Ni and Wallach [16], Cao, Wang and
Zhang [3], Petersen and Wylie [19] and Zhang [21], complete locally confor-
mally flat gradient shrinking solitons must be Sn, Rn, R× Sn−1 or one of their
quotients. With respect to the classification of complete gradient steady Ricci
solitons, Bryant [1] proved that there exists, up to scaling, a unique complete
rotationally symmetric gradient Ricci solitons on Rn, together with the trivial
Gaussian steady soliton. Cao and Chen [2] proved that these are the only pos-
sibilities under the assumption that the steady soliton is locally conformally
flat.

On the other hand, from the view point of submanifold geometry, Ricci
soliton is very important and interesting subject (cf. [4], [5], [6] and [7]), but
not so many results have been obtained. In this paper we study gradient
Ricci solitons of n-dimensional submanifold in the Riemannian product of unit
spheres Sn(1)× Sn(1), which is invariant under diagonal action of O(n). Note
that a lot of interesting results have been obtained for submanifolds in Sn×Sn
(cf. [13], [15] and [20]). We will show that equations of both ‘minimality’ and
‘gradient Ricci soliton’ (the potential function being invariant under the action
of O(n)) are described in terms of systems of nonlinear ordinary differential
equations. By computing the Weyl curvature tensors, we can see that they are
locally conformally flat. As special cases, we have totally geodesic submanifolds
Sn(1) × {point} and diagonal Sn(1/2), and rigid shrinking Ricci soliton R ×
Sn−1(1).

Acknowledgement. The authors would like to express their gratitude to the
referee for his/her careful reading of the manuscript and valuable suggestions.

2. Preliminaries

Let (M, g) and (M̃, g̃) be Riemannian manifolds and let Φ : M → M̃ be an
isometric immersion. Then for tangent vector fields X and Y on M , the Gauss
formula is

∇̃dΦ(X)dΦ(Y ) = dΦ(∇XY ) + σ(X,Y ),

where ∇̃, ∇ and σ are Levi-Civita connection of M̃ , M and the second funda-

mental tensor of M in M̃ , respectively. Also for X,Y, Z,W ∈ TM , the Gauss
equation is

g(R(X,Y )Z,W ) = g̃(R̃(dΦ(X), dΦ(Y ))dΦ(Z), dΦ(W ))

+ g̃(σ(Y, Z), σ(X,W ))− g̃(σ(X,Z), σ(Y,W )),(2.1)

where R̃ and R denote the curvature tensors of M̃ and M , respectively.
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When M̃ is a real space form of constant sectional curvature K, we have

g̃(R̃(X̃, Ỹ )Z̃, W̃ ) = K(g̃(Ỹ , Z̃)g̃(X̃, W̃ )− g̃(X̃, Z̃)g̃(Ỹ , W̃ )),

where X̃, Ỹ , Z̃, W̃ ∈ TSn(1). Hence if M̃ is a Riemannian product Sn(1) ×
Sn(1) of unit spheres Sn(1) and Sn(1), then we have

g̃(R̃(X̃, Ỹ )Z̃, W̃ ) = g̃(Ỹ1, Z̃1)g̃(X̃1, W̃1)− g̃(X̃1, Z̃1)g̃(Ỹ1, W̃1)

+ g̃(Ỹ2, Z̃2)g̃(X̃2, W̃2)− g̃(X̃2, Z̃2)g̃(Ỹ2, W̃2),(2.2)

where

X̃ = (X̃1, X̃2), Ỹ = (Ỹ1, Ỹ2),

Z̃ = (Z̃1, Z̃2), W̃ = (W̃1, W̃2) ∈ T (Sn(1)× Sn(1)) ∼= TSn(1)× TSn(1).

3. O(n)-invariant n-dimensional submanifold in Sn(1) × Sn(1)

Let

(x, y) : I → [−π/2, π/2]× [−π/2, π/2]− {(±π/2,±π/2)},
s 7→ (x(s), y(s))(3.1)

be a smooth curve of unit speed. We may put

(3.2) x′(s) = cosα(s), y′(s) = sinα(s)

for some α : I → R/2πZ. Let Φ : I × Sn−1(1) → Sn(1) × Sn(1) be a map
defined by

(3.3) Φ(s, p) = ((cosx(s)p, sinx(s)), (cos y(s)p, sin y(s))).

Differential of Φ is given by

dΦ(∂/∂s) = (cosα(s)(− sinx(s)p, cosx(s)), sinα(s)(− sin y(s)p, cos y(s))),

dΦ(ej) = ((cosx(s)ej , 0), (cos y(s)ej , 0)) (1 ≤ j ≤ n− 1),(3.4)

where e1, . . . , en−1 is an orthonormal basis of the tangent space TpS
n−1(1) of

unit (n− 1)-sphere at p. Hence we have

(3.5)

‖dΦ(∂/∂s)‖2 = 1,

‖dΦ(ej)‖2 = cos2 x(s) + cos2 y(s) =: A(s),

g(dΦ(∂/∂s), dΦ(ej)) = 0 (1 ≤ j ≤ n− 1).

Then (x(s), y(s)) 6= (±π/2,±π/2) implies A(s) > 0, so Φ is an immersion.
Note that the image Mn = Φ(I × Sn−1(1)) is invariant under the action O(n)
on Sn(1)× Sn(1) by

((cosxp, sinx), (cos yp, sin y)) 7→ ((cosxgp, sinx), (cos ygp, sin y)) (g ∈ O(n)).

Remark. Sufficient conditions, for which the image M = Φ(I × Sn−1(1)) is a
closed submanifold in Sn(1)× Sn(1), are as follows:
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(1) The curve (x, y) given by (3.1) is closed and the image (x, y)(I) does
not meet the boundary of the square [−π/2, π/2] × [−π/2, π/2], i.e.,
(x, y)(I) ⊂ (−π/2, π/2)× (−π/2, π/2).

(2) The curve (x, y) starts at a point in the vertex {(±π/2,±π/2)} and
ends at a different point in the vertex (cf. Example 1 and Example 2).

(3) The curve (x, y) given by (3.1) is closed and the image (x, y)(I) does not
meet the vertex of the square [−π/2, π/2]× [−π/2, π/2], i.e., (x, y)(I)∩
{(±π/2,±π/2)} = ∅, and furthermore if (x, y)(I) meets the edge

((−π/2, π/2)× {±π/2}) ∪ ({±π/2} × (−π/2, π/2))

at s = s0, then

(̃x, y)(s) :=


(x, y)(s) (s ≤ s0)

the image of (x, y)(s) under the reflection with respect to

the line segment of the edge containing (x(s0), y(s0)) (s ≥ s0)

is smooth near (x(s0), y(s0)) in R2 (cf. Example 3 and Example 4).

If we put

(3.6) Ej :=
1√
A(s)

ej (1 ≤ j ≤ n− 1),

then {∂/∂s,E1, . . . , En−1} is an orthonormal basis of the tangent space T(s,p)M
with respect to the induced metric. Also if we denote

N0 := (− sinα(s)(− sinx(s)p, cosx(s)), cosα(s)(− sin y(s)p, cos y(s))),

Nj :=
1√
A(s)

((− cos y(s)ej , 0), (cosx(s)ej , 0)) (1 ≤ j ≤ n− 1),(3.7)

then {N0, N1, . . . , Nn−1} is an orthonormal basis of the normal space T⊥(s,p)M

of M in Sn(1)× Sn(1).
Let D be the Euclidean covariant differentiation of R2n+2 = Rn+1 × Rn+1.

Then we have

(3.8)

DdΦ(∂/∂s)dΦ(∂/∂s)

= α′(s)N0−(cos2 α(s)(cosx(s)p, sinx(s)), sin2 α(s)(cos y(s)p, sin y(s))),

DdΦ(ej)dΦ(∂/∂s)

= (cosα(s)(− sinx(s)ej , 0), sinα(s)(− sin y(s)ej , 0)),

DdΦ(ek)dΦ(ej)

= ((cosx(s)Dekej , 0), (cos y(s)Dekej , 0)) (1 ≤ j, k ≤ n− 1),

where we also denote the Euclidean connection of Rn+1 as D. By taking the
normal components of M in Sn(1)×Sn(1), we obtain that second fundamental
tensor σ is given by

σ(∂/∂s, ∂/∂s) = α′(s)N0,
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σ(ej , ek) = B(s)δjkN0 (1 ≤ j, k ≤ n− 1),(3.9)

σ(∂/∂s, ej) =
C(s)√
A(s)

Nj (1 ≤ j ≤ n− 1),

where

B(s) = − sinα(s) cosx(s) sinx(s) + cosα(s) cos y(s) sin y(s),(3.10)

C(s) = cosα(s) sinx(s) cos y(s)− sinα(s) cosx(s) sin y(s).(3.11)

Hence the mean curvature vector H of Mn in Sn(1)× Sn(1) is given by

H =
1

n

(
α′(s) + (n− 1)

B(s)

A(s)

)
N0,

and we obtain:

Theorem 1. Let

(x, y) : I → [−π/2, π/2]× [−π/2, π/2]− {(±π/2,±π/2)}, s 7→ (x(s), y(s))

be a smooth curve of unit speed and let Φ : I × Sn−1(1) → Sn(1) × Sn(1)
be an immersion defined by (3.3). Then Mn is a minimal submanifold in
Sn(1)×Sn(1) if and only if x(s) and y(s) satisfy the following system of ODE:

x′(s) = cosα(s), y′(s) = sinα(s), α′(s) + (n− 1)
B(s)

A(s)
= 0,

where A(s) and B(s) are defined by (3.5) and (3.10), respectively.

We compute curvature tensor R of Mn. Using (2.1), (2.2), (3.4) and (3.9),
we have

g(R(ej , ek)el, em) = g̃(R̃(dΦ(ej), dΦ(ek))dΦ(el), dΦ(em))

+ g̃(σ(ek, el), σ(ej , em))− g̃(σ(ej , el), σ(ek, em))

= (A2(s) +B(s)2)(δklδjm − δjlδkm) (1 ≤ j, k, l,≤ n− 1),

where

(3.12) A2(s) = cos4 x(s) + cos4 y(s).

Hence with respect to unit vectors Ej (1 ≤ j ≤ n − 1) defined by (3.6), we
obtain

g(R(Ej , Ek)El, Em) = K(s)(δklδjm − δjlδkm),(3.13)

where

K(s) =
A2(s) +B(s)2

A(s)2
.(3.14)

Let Ls := {Φ(s, p) | p ∈ Sn−1} be a level set in M . Then the shape operator
As of Ls in M is

g(Asej , ek) = g̃(DdΦ(ek)dΦ(ej), dΦ(∂/∂s)) = E(s)δjk,
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where

E(s) := cosα(s) cosx(s) sinx(s) + sinα(s) cos y(s) sin y(s).(3.15)

Hence each Ls has constant sectional curvature K(s) + E(s)2/A(s)2.
Similarly we obtain

g(R(∂/∂s,Ej)Ek, El) = 0,(3.16)

g(R(∂/∂s,Ej)Ek, ∂/∂s) = T (s)δjk,

where

T (s) =
1

A(s)

(
α′(s)B(s)− C(s)2

A(s)
+D(s)

)
,(3.17)

and

D(s) = cos2 α(s) cos2 x(s) + sin2 α(s) cos2 y(s).(3.18)

Hence the Ricci tensor of M is given by

(3.19)

Ric(∂/∂s, ∂/∂s) = (n− 1)T (s),

Ric(∂/∂s,Ej) = 0,

Ric(Ej , Ek) = (T (s) + (n− 2)K(s))δjk.

Next we calculate Hessian Hf of a function f = f(s) on M . We put F (s) :=
f ′(s). Then the gradient of f(s) is F (s)∂/∂s. Hence using (3.4) and (3.8), we
obtain

Hf (∂/∂s, ∂/∂s) = g(∇∂/∂s(F (s)∂/∂s), ∂/∂s) = F ′(s),

Hf (∂/∂s,Ej) = g(∇∂/∂s(F (s)∂/∂s), ej)/
√
A(s) = 0,(3.20)

Hf (Ej , Ek) = g(∇ej (F (s)∂/∂s), ek)/A(s) = −E(s)F (s)

A(s)
.

Hence the gradient Ricci soliton equation Hf +Ric− λg = 0 (λ ∈ R) of M
is equivalent to

F ′(s) + (n− 1)T (s) = −E(s)F (s)

A(s)
+ T (s) + (n− 2)K(s) = λ.(3.21)

Consequently we obtain:

Theorem 2. Let

(x, y) : I → [−π/2, π/2]× [−π/2, π/2]− {(±π/2,±π/2)}, s 7→ (x(s), y(s))

be a smooth curve of unit speed and let Φ : I ×Sn−1(1)→ Sn(1)×Sn(1) be an
immersion defined by (3.3). Then the induced metric of Mn = Φ(I ×Sn−1(1))
satisfies the gradient Ricci soliton equation Hf + Ric− λg = 0 (λ ∈ R) if and
only if f(s), x(s) and y(s) satisfy the following system of ODE:

f ′(s) = F (s), x′(s) = cosα(s), y′(s) = sinα(s),
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F ′(s) = −(n− 1)
E(s)F (s)

A(s)
+ (n− 1)(n− 2)K(s)− (n− 2)λ,

B(s)α′(s) =
C(s)2

A(s)
−D(s) + E(s)F (s)− (n− 2)A(s)K(s) + λA(s),

where A(s), B(s), C(s), D(s), E(s) and K(s) are given by (3.5), (3.10), (3.11),
(3.18), (3.15), (3.14), respectively.

Remark. By computing the Weyl curvature tensors, we can see that submani-
folds obtained in this section are locally conformally flat.

4. Examples

In this section we give some examples.

Example 1. We consider a curve

(x, y) :
[
−π

2
,
π

2

]
→
[
−π

2
,
π

2

]
×
[
−π

2
,
π

2

]
, (x(s), y(s)) =

(
s,
π

2

)
.(4.1)

Then by (3.3), we have M = Φ(I × Sn−1) is Sn(1)× {(0, . . . , 0, 1)} in Sn(1)×
Sn(1). x′(s) = 1 and y′(s) = 0 imply

α(s) = B(s) = C(s) = 0,

A(s) = D(s) = cos2 s, A2(s) = cos4 s,

K(s) = T (s) = 1, E(s) = cos s sin s.

Hence (3.9) yield σ = 0, i.e., M is totally geodesic in Sn(1) × Sn(1). Also
using (3.19), we see that Ric = (n−1)g and M is Einstein of constant sectional
curvature 1.

Example 2. Let

(x, y) :

[
− π√

2
,
π√
2

]
→
[
−π

2
,
π

2

]
×
[
−π

2
,
π

2

]
,

(x(s), y(s)) =

(
s√
2
,
s√
2

)
.(4.2)

Then by (3.3), Φ : Sn(1)→ Sn(1)× Sn(1) is the diagonal embedding. x′(s) =

y′(s) = 1/
√

2 implies

α(s) =
π

4
, B(s) = C(s) = 0, A(s) = 2 cos2 s√

2
,

D(s) = cos2 s√
2
, A2(s) = 2 cos4 s√

2
,

K(s) = T (s) =
1

2
, E(s) =

√
2 cos

s√
2

sin
s√
2
.

Hence (3.9) yields σ = 0, i.e., M is totally geodesic in Sn(1) × Sn(1). Also
using (3.19), we see that Ric = ((n − 1)/2)g and M is Einstein of constant
sectional curvature 1/2.
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Example 3. Let

(x, y) :
[
−π

2
,
π

2

]
→
[
−π

2
,
π

2

]
×
[
−π

2
,
π

2

]
, (x(s), y(s)) = (s, 0) .(4.3)

Then we have x′(s) = 1, y′(s) = 0 and

α(s) = 0, A(s) = cos2 s+ 1, B(s) = 0, C(s) = sin s.

(3.9) yields

σ(∂/∂s, ∂/∂s) = σ(ej , ek) = 0 (1 ≤ j, k ≤ n− 1),

σ(∂/∂s, ej) =
sin s√

cos2 s+ 1
Nj (1 ≤ j ≤ n− 1).

Hence Mn is non-totally geodesic and minimal submanifold in Sn(1)× Sn(1).
Now if we extend the curve (x, y) of (4.3) as

(x, y) :

[
−π

2
,

3π

2

]
→
[
−π

2
,
π

2

]
×
[
−π

2
,
π

2

]
,

(x(s), y(s)) =


(s, 0)

(
−π

2
≤ s ≤ π

2

)
,

(−s+ π, 0)

(
π

2
≤ s ≤ 3π

2

)
,

then the corresponding submanifold Mn in Sn(1)× Sn(1) is closed.

Example 4. Let

(x, y) :

[
− π√

8
,
π√
8

]
→
[
−π

2
,
π

2

]
×
[
−π

2
,
π

2

]
,

(x(s), y(s)) =

(
s√
2

+
π

4
,
s√
2
− π

4

)
.(4.4)

Then we have A(s) = cos2 x(s) + cos2 y(s) = 1. Hence the induced metric on
Mn is the Riemannian product metric on I×Sn−1(1). Furthermore we obtain:

x′(s) = y′(s) =
1√
2
,

α(s) =
π

4
, B(s) = − 1√

2
cos(
√

2s),

C(s) =
1√
2
, D(s) =

1

2
, A2(s) =

1

2
(1 + sin2(

√
2s)),

K(s) = 1, T (s) = 0, E(s) = 0,

Ric(∂/∂s, ∂/∂s) = Ric(∂/∂s,Ej) = 0,

Ric(Ej , Ek) = (n− 2)δjk.

Then the gradient Ricci soliton equation (3.21) is F ′(s) = n − 2 = λ. Conse-
quently the potential function f(s) is a quadratic function and Ricci soliton is
shrinking and rigid.
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If we extend the curve (x, y) of (4.4) as

(x, y) :

[
− π√

8
,

7π√
8

]
→
[
−π

2
,
π

2

]
×
[
−π

2
,
π

2

]
,

(x(s), y(s)) =



(
s√
2

+
π

4
,
s√
2
− π

4

) (
− π√

8
≤ s ≤ π√

8

)
,(

− s√
2

+
3π

4
,
s√
2
− π

4

) (
π√
8
≤ s ≤ 3π√

8

)
,(

− s√
2

+
3π

4
,− s√

2
+

5π

4

) (
3π√

8
≤ s ≤ 5π√

8

)
,(

s√
2
− 7π

4
,− s√

2
+

5π

4

) (
5π√

8
≤ s ≤ 7π√

8

)
,

then the corresponding submanifold Mn is S1 × Sn−1 in Sn(1) × Sn(1), and
rigid Ricci soliton is nothing but the universal covering R1×Sn−1 of S1×Sn−1.
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