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HEAT KERNEL ESTIMATES FOR DIRICHLET FRACTIONAL
LAPLACIAN WITH GRADIENT PERTURBATION

PENG CHEN, RENMING SONG, LONGJIE XIE, AND YINGCHAO XIE

ABSTRACT. We give a direct proof of the sharp two-sided estimates,
recently established in [4, 9], for the Dirichlet heat kernel of the frac-
tional Laplacian with gradient perturbation in C1! open sets by using
Duhamel’s formula. We also obtain a gradient estimate for the Dirichlet
heat kernel. Our assumption on the open set is slightly weaker in that
we only require D to be C1¢ for some 6 € (a/2,1].

1. Introduction and main results

Let X = (X¢)i>0 be an isotropic a-stable process on R? with d > 1 and
a € (0,2). The infinitesimal generator of X is the fractional Laplacian A%/? :=
—(=A)*/2. For f € C?(R?), the fractional Laplacian A®/? can be written in
the following form:

A (@)= [ [fa+2) ~ @) - oz V@] S d,
R4 |29+
where ¢q o is a positive constant. It is well known that the heat kernel p(¢, z, y)
of A®/2 (or equivalently, the transition density of X) has the following estimate:
t
o=yl + A7y

p(t,x,y) < ( Y(t,z,y) € (0,00) x RY x R%.
Here and below, for two non-negative functions f and g, the notation f < g
means that there are positive constants ¢; and cg such that c1g(z) < f(z) <
¢2g(z) in the common domain of f and g.
In [1], Bogdan and Jakubowski studied the following perturbation of A®/2
by a gradient operator
L =AY 4 b.V
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in the case d > 2 and « € (1,2). They assumed that the drift b belongs to the
Kato class defined below.

Definition. For any real-valued function f on R?, define for 7 > 0
1S (W)l
K¢(r) :== sup / dy,
f ) z€RE J B(z,r) ‘.’E - y|d+17a

where B(z,7) denotes the open ball centered at » € R? with radius . Then f
is said to belong to the Kato class K®~! if lim,.|o K$(r)=0.

In the remainder of this paper, we will always assume that d > 2 and a €
(1,2), unless explicitly stated otherwise. Intuitively, the heat kernel p®(t, z,y)
of #? should satisfy the following Duhamel formula:

t
Pt 2,y) = plt,2,y) + / / PPt — 5,2, 2)b(z) - Vap(s, 2, y)dzds.
]Rd

Define p§(t, z,y) := p(t,z,y) and for k >

b(t,z,y) // o 1 (t —s,2,2)b(2) - V.p(s, z,y)dzds.
Rd
The following theorem is the main result of [1].

Theorem 1.1. Assume that b € K¢ 1.

(1) There exist Ty > 0 and C > 1 depending on b only through the rate at
which K|b\( ) goes to zero such that Y po o ph(t,z,y) converges locally

uniformly on (0, Tp] x R? x R? to a positive jointly continuous function
p°(t,2,y) and that on (0,Tp] x R? x RY,

Clp(t,z,y) < p'(ta,y) < Oplt,a,y).
Moreover, fRd pb(t,z,y)dy = 1 for every t € (0,Ty] and x € RY.
(2) The function p°(t,x,y) can be extended uniquely to a positive jointly

continuous function on (0,00) x R x R? so that for all s,t € (0,00)
and (z,y) € R4 x R, [L,p°(t,z,y)dy =1 and

Ptsen) = [ e nd
(3) If we define
FUf@) = [ 3 ),
then for any f.g € C°(RY),
iim [ 7 (P @) = S@) glo)de = [ (£ @)yl

tl0 Rd

Thus, p°(t, z,y) is the fundamental solution of £° in the distributional
sense.
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Using the semigroup property, one can easily check that for any 7" > 0, there
exists a constant C' > 1 such that for all (t,z,y) € (0,7] x R? x R4,

(1) C'p(t,z,y) < p(t,z,y) < Cplt,z,y).

It follows from [4, Proposition 2.3] that {P?,¢t > 0} form a Feller semigroup,
so there is a conservative Feller process X° := {X?,t > 0,P,,» € R%} on R?
such that PP f(z) = E,[f(X})]. The process X° is nonsymmetric and is called
an a-stable process with drift b. See also [2,13] for the two-sided heat kernel
estimates of more general non-local operators in the whole space RZ.

For any open subset D C R?, define 7% := inf{t > 0: X ¢ D}. We will
use X to denote the subprocess of X? in D; that is, X*P(w) := X%(w)
if t < 7% (w) and X*P(w) := 9 if t > 74(w), where 9 is a cemetery state.
Throughout this paper, we use the convention that for every function f, we
extend its definition to 9 by setting f(d) = 0. The infinitesimal generator of
XbP is given by .Z%P 1= £?|p, that is, Z® on D with zero exterior condition.
The process X*P has a joint continuous transition density p*? (¢, z,y) which
is also the Dirichlet heat kernel for .#*”. The subprocess of X in D will be
denoted by X and it is known to have a transition density p” (¢, z, ).

Due to the complication near the boundary, sharp two-sided estimates for
the Dirichlet heat kernel are much more difficult to obtain. The first sharp two-
sided estimates for the Dirichlet heat kernels of discontinuous Markov processes
are due to [3]. To state the related results, we first recall the definition of C'*+
open sets. For 6 € (0,1], an open set D in R? is said to be C1¢ if there exist
ro > 0 and A > 0 such that for every Q € 0D, there exist a C'f-function ¢ =
bq : Ri-1 — R satisfying ¢(0) = Vo(0) = 0, Vo] < A, [Vo(z) — Vo(2)| <
Alz—z|? and an orthonormal coordinate system y = (y1,...,Yd—1,Yd) := (7, ya)
such that B(Q,ro) "D = B(Q,70) N{y : ya > ¢(§)}. The pair (rg,A) is called
the characteristics of the C*? open set D. For t > 0 and z,y € D, we define

p(x)a/Q a/2

D p(y)
t,xr,y) = (1 A ) (1 A

¢ (t,2,y) i i

where p(x) denotes the distance between a2 and D¢. In [3], Chen, Kim and

Song proved that for any d > 1, a € (0,2) and T > 0, when D is a C*! open

set in R?, there exists a constant C' > 0 such that

(2) C7'qP(t,2,y) <pP(t,z,y) <O (t,z,y), (t,z,y) € (0,T] x D x D.

)p(tamvy),

The above result has been generalized to C*? open sets with 6 € («/2,1] in
[8]. As for the estimates of p”? (¢, z,y), the following result is proved in [4] in
the case when D is a bounded C™! open set. The unbounded case is due to
[9]. By using the results of [8], and repeating the arguments in [4] and [9], one
can get the following result.

Theorem 1.2. Let b € K1, § € (a/2,1] and D be a C1¥ open set in R?
with CY9 characteristics(rg, A). Then for any T > 0, there exists a constant
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C = C(T,r9,A,d,,0,b) > 1 which depends on b only via the rate at which
Kﬁ)‘(r) tends to zero such that for all (t,z,y) € (0,T] x D x D,

C Pt z,y) <p"P(tz,y) < CqP(t,z,y).

One might think that the estimates in Theorem 1.2 can be obtained from
the estimates (2) for p? (¢, z,y) using the following Duhamel formula:

t
(3) PPt 2y) = PPt 2,y) + / / PPt — 5,2, 2)b(2) - VapP (s, 2 y)dads.
0JD

However, unlike the whole space case, there was no good estimate on the gra-

dient V.pP(t,z,y) of pP(t,z,5), so the approach mentioned above could not

be carried through. Another obstacle to carrying out the approach above in

the present case is that the following form of 3-P inequality: there exists C' > 0

such that for any 0 < s < t and x,y,z € D,

D(t B S,fE,Z)pD(S,Z,y)
pP(t,z,y)

@ F < C(EP(t - 5,2,2) + " (5,2,9),

does not hold (see [5, Remark 2.3]). A whole space analog of the inequality
above played a crucial role in proving the estimates in Theorem 1.1. Partly due
to the two reasons mentioned above, Theorem 1.2 was much more difficult to
prove than Theorem 1.1. To get around the difficulties mentioned above, [4,9]
used the Duhamel formula for the Green function of X% and the probabilistic
road-map designed in [3] for establishing the estimates (2).

In the recent paper [10], Kulczycki and Ryznar proved the following gradient
estimate for pP(t,x,y) (see [10, Theorem 1.1 and Corollary 1.2]): there exists
a constant C; = Cy(d,a) > 0 such that for any open set D C R¢ and all
(t,x,y) € (0,1] x D x D,

P

|V.p® (t,2,y)| < p t,z,y).

1

() A t1/al
It follows immediately that for any 7' > 0, there exists a constant Cy =
Ca(d, o, T) > 0 such that for any open set D C R? and all (¢,z,y) € (0,T] x
D x D,

02 D(

) V.l (t < ————77—

t,x,y).
In this paper, we will use (5) and the Duhamel formula (3) to give a direct proof
of Theorem 1.2. In fact, we will establish two-sided estimates for p”* with b in
a certain local Kato class and D being a C? open set with 6 € (a/2, 1] instead
of C! open set. We also prove a gradient estimate for p* (¢, x,%), which is
of independent interest.

To state our main results, we first introduce the following local Kato class.
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Definition. Let D be any open set in R%. For any real-valued function f
defined on D, we define for every r > 0,

/(W)

K¥P () = sup/ — = dy.
! 2eD JDB(a,r [T — yldti=e

Then f is said to belong to the local Kato class K% ! if lim,.|o K?’D(r) = 0.

Remark 1.3. Using the maximum principle (see [7, Theorem 5.2.2]) it is easy
to check that a function b : D — R? belongs to K%‘l if and only b1p belongs
to K1,

In the remainder of this paper, for any b : D — R? belonging to K%‘l, we
will use X? to denote the a-stable process with drift b1p. For any open set
D C R, we will use X*P to denote the subprocess of X? killed upon exiting
D.

The following is the main result of this paper.

Theorem 1.4. Let D be a C*? open subset of R with 6 € (a/2,1] and b :
D — R? belongs to K%‘l. Then there exists a unique function p*P (t,z,y) on
(0,00) X D x D satisfying (3) and the following: for any T > 0, there exists a
constant Cy > 1 such that for allt € (0,T) and z,y € D,

(6) CrlaP(ta,y) <Pt a,y) < CrgP(t2,y).

Moreover, the following properties hold:

(i) for any T > 0, there exists a constant Co > 0 such that for allt € (0,T]
and xz,y € D,

Cy
(7) |vmﬁb’D(t7xay)| < WPD(tvxvy)7

and p*P (t,z,y) also satisfies

t
(8) PP(t,y) = pP (b x,y) + / / PPt — 5,2, 2)b(2) - V5" (s, 2, y)d=ds;
0JD

(ii) for all 0 < s < t and x,y € D, the following Chapman-Kolmogorov’s
equation holds:

(9) / BD(t — 5,2, )P0 (s, 2, y)dz = 0 (1,2, y):
D
(iii) for any f € C%(D), we have
t
(10) PP f(z) = f(z) + / PP 5D f(z)ds,
0

b,D
where P)"" f(x) == [, p"P(t,z,y) f(y)dy;
(iv) for any uniformly continuous function f(x) with compact supports, we
have

. b,Dp _
(11) lim |7 f = flloo = 0.
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Remark 1.5. By Lemma 2.2 below and Theorem 1.2, we know that pb’D(t, z, 1)
also satisfy (3) and (6). Thus, by the uniqueness in Theorem 1.4, we have that
p*P(t,z,y) is the transition density X* P, that is, p> 2 (t,z,y) = p»P(t, z,v).

As an application of our heat kernel estimates, we can get the following
Harnack inequality on the semigroup Ptb’D7 which may be used to study the
long time behavior of the process, see, for example, [11,12].

Corollary 1.6. There exists a constant C such that for any non-negative func-
tion f € $(D), T >0 and z,y € D, we have

z a/2 r— d+o
) P <c (v A (v B ),

The remainder of this paper is organized as follows. In Section 2, we prepare
some important inequalities for latter use; the proof of the main result, Theorem
1.4, will be given in Section 3.

We conclude this introduction by spelling out some conventions that will be
used throughout this paper. The letter C' with or without subscripts will denote
an unimportant constant and f < g means that f < Cyg for some C' > 1. The
letter N will denote the collection of positive integers, and Ng = NU{0}. We will
use := to denote a definition, %, (D) to denote the space of all bounded Borel
measurable functions on D and we assume that all the functions considered in
this paper are Borel measurable.

2. Preliminaries

By combining [1, Corollary 12] with Remark 1.3, we immediately get the
following equivalent characterization of K%‘l, which will be used in the proof
of our heat kernel estimates.

Lemma 2.1. Let § > D‘T’l A function f belongs to K%_l if and only if

. 1 8
P—I)I(l) :Lelg /D <|y _ $|d+1_0‘ A |y _ x|d+1—o{+o¢,8>|f(y)|dy =0.

The next result says that if b € K1 then the density p»” (¢, z,y) of th’D
does satisfy the Duhamel formula (3). This result will used in the proof of our
main result.

Lemma 2.2. Assume that b € K*~' and D is an open subset of R*. Then the
transition density p»P (t,x,y) of XI'P satisfies (3).

Proof. Let us choose a function ¢ € C2° ((0,00) x R?) with Supp[¢] C (0,1) x
B(0,1) and [;° [z é(r,y)dydr = 1. Fix t > 0, for any ¢ € C¢(D), define

f(s,z) := PP ap(z) and f, := ¢y, * f, where ¢, (r,y) = n?T1¢(nr,ny). Let D;
be a sequence of relatively compact open subsets of D such that D; C ﬁ] C
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Djiq forall j > 1and D; T D. Let T%j =inf{t >0: X} € DS} Tt follows
from [6] that X" is a weak solution of the stochastic differential equation
dXP = dX; +b(XD)dt.
Thus by It6’s formula, we have for sufficiently large n,
E[fa(t ATD, Xinry )] = fal0,2)

t
= / Psb’DJ'[asfn+Aa/2fn+b-an](s,x)ds
0

t
= / PYDi [y, * (55f—|-Aa/2f) + b ¢y + Vf](s,z)ds.

0
Since b € K®~! and
p*Pi(t ,y) < p(ta,y),
applying (5), (1) and letting n — oo we get
t
E[f(tATh,s Xiars )] = f(0,2) +/ PYPi(b-Vf)(s,z)ds.
i 0

Note that f(t,z) = ¥(x) and f(0,z) = PP (z), taking j — oo we arrive at
¢
PEPu(@) = PPu() + [ PEP (b VPP ) (@),
0

which in turn means the desired result. O

For any v € R, we define for t > 0 and = € R?,
£

Ttx) = ————
o' (t,x) (|| +t1/a)d+a
and Jo2
~ p(x)®
t,r):=1A
q(t,x) 7

The following easy result will be used several times below.

Lemma 2.3. For every —1 <~y <d/a, t >0 and z € R?,

. 1 ity
(13) /0 07 (s,x)ds < o A e

Proof. If |z| > t'/*, we have

t t rY tl-‘r’y
(s, 2)ds < ds < .
[ s < [ s <

If |z| < t1/@, we have

07 (s,x)ds </ 7ds+/ ST ds X ———.
0 ’ S oo |zdte || || d=ey

Combining the above computations, we get the desired result. (I
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In the remainder of this section, we fix an arbitrary T' > 0 and assume that D
is a C1Y open set in R? with 6 € («/2,1]. Recall that p” (¢, z,y) is the transition
density of X and it holds that (see [8]) for all (¢,z,y) € (0,T] x D x D,

(14) pP(t,x,y) = 4t 2)q(t, y)o' (t,x —y).
Although the classical 3-P inequality of the form (4) does not hold for p? (¢, x, )
we do have the following generalized 3-P type inequality.
Lemma 2.4. For any0 < s <t <T and x,y,z € D, we have
D D
p (t*S,IE,Z)p (szay) o 0 0
=< plz (Q t—s,x—2)+0(s,2—y )
PP (t2.9) e JrelEy
Proof. Note that
(lx 7 y‘ + tl/a)d+a < (|:C . Z| + (t o S)l/a)dJra + (|Z N y| + sl/a)dJroz'
Thus
ol(t —s,x—2)o (s, z—y) (t—s)s ' Ot — s, — 2)0%(s, 2 — y)

(15)

ol(t,x —y) t otz —y)

(t _ts)s : (Qo(t —s,x—2)+0(s, 2 _y))'

(16) =

It is obvious that

Combining this with (14) we can derive that

pD(t — 5%, Z)pD(S7 2,y)
pP(t 2, y)
p(2)* t  ol(t—s,a—2)0'(s,2—y)
T V(t=3s)s (t—s)s o'tz —y)
p(2)” t (t—

! \/(tis)s.\/(tis)s. tS)S'(Qo(t_s’x_z)+go(872—y))

= p(2)" (Qo(t —s,x—2)+0%(s,2 — y))-
The proof is complete. O
We will also need the following generalized integral inequality.

Lemma 2.5. For anyt € (0,T] and y,z € D, we have

t/2 t/2
a7 at.2) / oD (s, 2 y)ds < (1, y) / 125, 2)0 (5, 2 — y)ds.
0 0

Proof. Tt can be easily checked that (17) holds when p(y) > (t/2)"/® or p(z) <

2p(y). So we will assume p(y) < (t/2)* A (p(z)/2) throughout this proof.

Note that in this case, we have

p(z)
2

|z =yl = p(2) — ply) =2 > p(y)-
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For convenience, we define

/2
L= q(t, 2) / 10D (5, 2, y)ds
0

and
t/2
R = q~(t,y)/ 5_1/"“(7(37 2)0" (s, 2 — y)ds.
0

We deal with three different cases separately.
Case 1: (t/2)Y* < p(2)/2 < |z — y|. In this case, we have

t/2 a/2
L j/ 1/a <1A p(y) ) S e
0

V5 ) =y
p(y)® t/2 a/2
:/ 571/04 Sd+ d8+/ S*l/ap(y) . 5d+ ds
0 |Z_?J‘ ¢ p(y)e \/5 |Z_y‘ @
P(@/)a/2 3/2—1/a
18 = —
U8 =Ry
and
a/2 t/2 a/2
R = r(y) / s 1/a 8 ds = r(y) / $3/2-1/a

§ =
Vi Jo |2 — yldte |z — y|dte

Thus, we have L < R in this case.

Case 2: p(2)/2 < (t/2)Y/* < |z —y|. By using the same argument as in (18),
we can get that

1 P22 /t/QS—l/a (M p(y)a/Q) S ds
TVt Vs o) [z —yltte
- p(z)cx/2 P(Z/)a/z 3/2-1/c

Vi oo |z —ylite

a/2  pt/2 /2

Rxp(zgi s~ Ve (1/\'()('?)[ ) 5 ds
0 S

a/2

- P(Z)a/2 ) py) £3/2-1/a
Vi Tyl
Thus, we also have L < R in this case.
Case 3: p(2)/2 < |z —y| < (t/2)Y/“. In this case, we have

a/2 /2 a/2
L=< / s/ (1 A PO ) (g‘d/a A ) ds
0 Vs |z — y|dto

_ (z)a/Q (/P(y) s—l/a s d3+/|z_y|a S_l/a p(y)a/2
\/7? 0 |Z - y|d+a p(y)™ \/E

and

<
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t/2 a/2
5 d5+/ sl/ap(y)sd/o‘ds>
\

X —
|Z - y|d+a z—y|™ S
_ P p)* " p(2)*2 - p(y)*?
T Vi |z — y|diar Hd+1)/a

Using the same idea, we can also get

a2 rt)2 a/2
R = P(y) s 1/a (1/\ p(2) ) (S—d/a/\ s )ds

vVt Jo Vs |z — y[dte
_ P p(y) p(2)*% - ply)?
T Vi |z — yldti-er2 Hd+1)/a
Thus, L < R is true. The proof is now complete. O

3. Proof of Theorem 1.4

Throughout this section, unless specified otherwise, we always assume that
b: D — R? belongs to K%ﬁl. The following lemma plays an important role in
proving our main result.

Lemma 3.1. Let T > 0. For any t € (0,T], there exists a constant C(t) =
C(t,b) > 0 such that for all x,y € D, we have

t
[ s = s 1907 (5,2 p)ldads < CORP (022,
0/D
where C(t) is nondecreasing in t and C(t) — 0 as t — 0.

Proof. Define
1 ¢
I= m/o pP(t = s,2,2) - |[V.pP (s, 2,y)|ds.
Then, by (5), we have
t D D
p (t — 5T, Z)p (S, Zvy)
I'< 71 s1/a 3 @ d
_/0 plz) PRI A=) ] pP(t,2,y) ’
+/t1 1 1 pP(t —s,2,2)p
o p(z) Ast/a [p(2)2st/ N (t—s)t/] PP (¢, z,y)
= Il +Ig.

On one hand, we have by (15) that

D(s,z,y)

ds

t
T = / P(Z)%l1[p(z)<sl/a/\(tfs)1/a} (Qo(t —s,0—2)+0°(s,2 — y)>d5
0

N

t t
/ (t—s)l_l/o‘go(t—s,w—z)ds—i—/ stV g0(s, 2 —y)ds
0 0

t
= / s/ (Ql(s,x —2)+0'(s,2 — y))ds.
0
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We proceed to show that Z, has the same estimate:

(19) Iy = /ts_l/o‘(gl(s,m—z)+Ql(s,z—y))ds.

0

Since
1 1 1

p(2) A Sl/a1[P(Z)>51/°‘/\(t*5)1/°‘] S sl/a + (t—s)l/e”

t D D
1 1 p (t_87.’1772)p (S,Z7y)
T, < ds.
QK;QVQ+@@MJ pP(t,w,y) ’

Using the symmetry in s and ¢ — s, we only need to prove that

t Y D
7, ::/ L pP(t=s,,2)p7(s,2,9) o
O

By (17), we have

1/a
A t
Iy < 5z / “HeapD (s, 2, y)ds
0

t x,y)
¢
/ sTVepP(t — sz, 2)ds
t/2

we have

2) + o' (s, 2 — y))ds.

pP(t 2 y)
pP(t,z,y)
q(t, Y)

~ z)q(t, 1 o2 —1/ax 1 d
_mg(,x—z) ; s q(s,2)0 (8,2 —y)ds

a(t.2)i(t,y) /“21m~ !

+ =0 (t,z —y S q(s,2)0" (s,x — z)ds

FAOTRTIA (2o =)
=:Zo1 + 1o,

where we have used a change of variables and the facts that pl(t,z — 2) =<

pt(t—s,z—2z) for s € (0,¢/2). It suffices to take care of one of the two terms of

the right hand side above, the other term can be handled in a similar fashion.
By (16), we have

5 q(t, 2)q(t, t/2
@1<ﬁp@§;f/ sVt — 5,0 — 2)0 (5,2 — y)ds
) 0

t/2 104 _ 1 _
j/ -1/l (t Sf 2)0' (5,2 = y) o
0 (tvx_y)
j/ —1/04 5 + i ds
0 ( o= 2+ (= )/2) T (f2 =y 51/

/ *1/a x—z)+g1(8,2—y)>d3-

0
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Combining the four displays above, we get (19). Using (13) with vy =1 — 1/«
we arrive at

t
Ij/ 3_1/0‘(g1(s,x—z)—I—Ql(s,z—y))ds
0

50 1 t2—1/o¢ 1 t2—1/0¢
< A A
(20) <x—z|d+1—a T e T g |z—y|d+a>

Consequently,

t
/ / PPt — 5,2, 2)|b(2)| - [V2pP (5, 2 )|dzds
0J D

1 t2—1/()¢ D
= sup /\D (|w — Z|d+1,a A ‘w — Z|d+a> |b(Z)|dZ "D (taxay)

weD

The desired conclusion now follows from Lemma 2.1 with 8 =2 —1/a. O
To derive our gradient estimate, we will also need the following result.

Lemma 3.2. Let T > 0. For any t € (0,T)], there exists C(t) = a(t,b) >0
such that for all x,y € D, we have

Lro pP(t—s,x,2) . D O i}
/O/D p(x)/\(t—s)l/a|b(z)‘ |V.p~ (s, 2,y)|dzds < p(x)/\tl/ap (t,z,y),

where C(t) is nondecreasing in t and C(t) = 0 as t — 0.

Proof. Define

€= pP(t, z,y)

Then, we have that
~ p(x) At/ /t pP(t —s,2,2)
0

p(x)Atl/O‘/t pP(t —s,2,2)
o P

. D
(ZL') A (t _ S)l/a |vzp (S,Z,y)|d5-

L) <—syr/e) - [V=pP (s, 2,)|ds

~ pP(ta,y) p(x)
pla) Nt [t pP(t — 5,2, 2) PP (s, 2 y)
i) T Lip(a)>(t—s)1/] ° /e ds
PPt xy) Jo o (t—s) p(z) Astie
=: Q1 + Qo.
Using (20) in the second line below, we get that
1 ‘b D
Q1 < m/o po(t—s,2,2)-[V.p~(s,2,y)|ds

1 t271/a 1 t271/o¢
=< A\ + AN .
= (s A g g )
To deal with Q2, we rewrite it as

p() AV [EpP(t — sz, ) pD(S,Z,y)l |
o (t—s)l/a @9l T et

Q2= pP(t, x,y)
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pla) Nt [TpP(t—s,2,2) pP(s,2,9) d
pD(t,7,y) (t —s)l/a[p@>=s)t/o] " T o Hp(2)<st/ )] s

=: Qo1 + Qa2.
On one hand, we have by (17) that

o A fl/a t/2 D(t—s,z,z2) .pD(S,Z,y)dS
21 < (t - y 1/2 t* 5 1/(1 gl/a

1/04"’ t/2
< e tf/qcft’y)glu,x_z) [ st 0 s - s

z) AtV gt z)q(t,y 42 o~
4 B ST o) [ 05,200 s 2,

Repeating the argument used to estimate Ty in the proof of Lemma 3.1, we
get that

t/2
O < W | s = 2otz - s

1 t2—1/a 1 t2—1/a
= A A .
= (s e + e N )

To deal with Qso, we write

0,,— @At /t/QpD(t —8,4,2) RO P
pP(t,z,y) (t —s)l/a [p(z)>(t—s)1/] 0(z) [p(z)<st/ )]
plx) At /t PPt — 5,7, 2) P (s.2,9)
1 aj————1 ayd
TPy Jy (t—s)ia P> T T e <t ) €
=: Qo1 + Q0.
We can use (15) to deduce that

A x) Attt o
Qa1 < % / p(2)* My <si/a) (Qo(t —s,x—2)+ 0"(s, 2 — y))ds
0

t/2
< / sl (go(s,x —2z)+ go(s7 z— y))ds
0

1 t271/a 1 t271/a
= A N .
e e e e

We claim that

R t2—2/a 1 t2—2/a
@) Qo % (s e g A )

To prove this claim, we write

p(x) At/ /t pP(t — s,z,2)
2 (

022 = pP(t 2, y) t—s)l/e Lip(a)y>(t—s)1/e]
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D
P~ (s, 2,y)
XTI e <p)steds
plz) At/ [t pP(t — s, a,2)
PP (t, z,y) e (E— s)1/a [p(z)>(t—s)1/°]
D
p7(s,2,y)
T eestemsyeds

=: Ql + Qg.
If we denote A := [(t — s)1/* < p(z) < s'/%], then we have by (16) that
2
p(z) At/

= \/W/t/z(t_ 3)171/(1;}(2)0‘/271(@0@— s,z — Z) +Q0(8,Z—y)> 14ds

t
< tl/a71/2/ (t _ S)lfl/ocp(z)oz/QflQO(S7 P y)lAds
t/2

t

+ p(x)to/? // (t — ) p(2) 20 (t — s, — 2)1 4ds
/2

=: Qll + 9127

Ja
where in the second inequality we used the fact that TGO \/f(p(m) A

q(t,)
tl/"‘)l_a/Q. One can easily check that

t
chl jtl/afl/QQO(t,Ziy)/ (t78)3/272/ad5
t/2
< 1 A t
= Jr—yldtize Uy gt

By the fact p(z) < p(z) + |x — 2|, we further have

t
D12 =X (p(2)' 72 4 | Z‘ra/?)/ (t =) p(2)* 2 1Mt = 5,2 — 2)1ads
/2

¢
< / (t—s) Vol (t — 5,2 — 2)ds
/2

t
+ |z — z|1_a/2/ (t —s)V/27 2/l (t — 5,2 — 2)ds
t/2

1 t272/o¢
— |{L‘ _ z|d+lfa A ‘.’E _ Z|d+a71 :

To estimate 25, we can use (15) to deduce that
t

25 = (p() Atl/a)// (=) 7)<
t/2
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0 0 d
X o' (t—s,x—2z)+0 (s,2—y))ds

t
< tl/a// (£ = 8) 7 p(2)* My < msyr/oy (5,2 — y)ds
t/2

t

L T
t/2

Then by the same argument used for Qh one can check that

t 1 22/
— y|d+1foz A |Z _ y|d+1 + |CE — Z|d+17a A |l‘ _ Z‘dJrafl'

9, =<
|z
Since for any x, z € D, we have

1 N 21/« 1 N t
|x _ Z|d+17a |x _ Z|d+a = |x _ Z|d+17a |x _ Z|d+1

1 t272/o¢
S [z — z|dFl-a A |z — z]dta—1’

(22)
combining the displays above, we get (21).
Combining (22), (21) with our estimates for Q;, Qa1, Qa21, we get

1 t272/a 1 t272/a
0= (s " e g )

Hence

t
// Vap® (t = 5,2, 2)|[b(2)] - [VopP (s, 2,)|dzds
0JD

< / LS A Y e
su z Zr— y Ly .
= wen Jp \w— 2@ 1=a © Juy — et ploy il Y

The desired conclusion now follows from Lemma 2.1 with 8 =2 — 2/a. O

We now proceed to solve the integral equation (3). For all (¢,z,y) € (0,T] X
D x D, set po(t,z,y) := pP(t,z,y), and define inductively that for k > 1,

t

(23) pk(t7 Zz, y) = // pk—l(t - 5,7, Z)b(Z) : vpo(Sy 2, y)dZdS
0/D

The following result is an easy consequence of Lemmas 3.1 and 3.2.

Lemma 3.3. LetT > 0. For every k > 1 and x,y € D, we have
(24) [pre(t,z,y)| < C()*pP (¢, 2,y)
and

A4\ k
33’(25) D(tax,y)a

25 «Pk(t, 2, Y)| <
(25) Voelt, )| < o S
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where C(t) is the constant in Lemma 3.1 and C(t) is the constant in Lemma
3.2. Moreover, it holds that

¢
(26) pk<t7 :E7y) = // po(t -5, Z)b(Z) : Vzpkfl(‘& 2, y)dst
0JD
Proof. We first prove (24) by induction. By Lemma 3.1, we know that (24)

holds for £ = 1. Now suppose that it holds for £ > 1. Then by definition and
using Lemma 3.1 again, we have

t
[Pkt1(t, 2, y)] <// Ipk(t — s,2,2)| - [b(2)] - [V2po(s, 2, y)|dzds

// (t— 5,2, 2)b()| - [V=po(s, 2, y)ld=ds
O<t>’““ Pt z,y).
Following the same argument with Lemma 3.1 replaced by Lemma 3.2, we can
show (25) is true. We proceed to prove (26). It is obvious that (26) holds for

k = 1. Suppose that it is true for certain k£ > 1. Then, we have by Fubini’s
theorem that

t
pk+1(t7x7y):// pk(tfs,x,z)b(z)'Vzpo(s,z,y)dzds
0JD

t t—s
B // / / p()(t —sTnT, u)b(u) : Vupkfl(r, u, Z)dudr
o/pJo JbD

x b(z) - Vpo(s, z,y)dzds

t
://po(t_f‘axau // Vupk 17"—8’1,02)
0JD

x b(z)-V.po(s, z,y)dzdsdud?
¢
= [ [ ot = fo b)Y ) dud,
0/D

here in the third equality, we used the change of variable # = r + s. The proof
is complete. ([

Now, we are in the position to give:

Proof of Theorem 1.4. Let py be defined by (23). It follows from Lemma 3.1
that there exists Ty € (0, 1] such that C(Tp) < 1/4. Hence

> 4
(27) Z ‘pk(taxay” < ng(t,(E,y), (t,x,y) € (OaTO] x D x D>
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which means that the series > - pi(t, 2,y) is convergent on (0,7y] x D x D.
(23)

Define p*P(t, z,y) = Yoo pr(t,x,y) on (0,Ty] x D x D. By (23), we have
n+1

(28) > pr(t,z,y) = po(t,z,) // Zpk (t—s,2,2)b(2)-V.po(s, z,y)dzds.
k=0 D=0

Letting n — oo on both sides, we get (3).
The upper bound on (0,Ty] x D x D follows from (27). As for the lower
bound on (0,7p] x D x D, we have

2
~b,D E D
’ t t t t .
D ( 71’,@/) x y |pk z y 3p ( 71’,@/)

Thus, (6) is valid on (0,Tp] x D x D.

Now let p*P (¢, z,y) be another solution to (3) satisfying (6), with T  replaced
by Tp. We claim that for every k € N and t € (0,Tp],x,y € D, there exists a
constant Cy such that

(29) 577t 2, y) = 5P (12, )| < CoO(8) P (12, y).
Indeed, for k =1, using (3), (6) and Lemma 3.1 we have

Pt,x,y) —p"P(t,2,y)|

// PPP(t — 5,2, 2)| + [Pt — 5,2, 2)]) - [D(2)] - [V2pP (5, 2,y)|deds
D D D
<%//p(#wa%W@ﬁWw(&AM®®<Gﬁ@p@ww)
0JD

Suppose that (29) holds for some k € N. By (3), Lemma 3.1 and the induction
hypothesis, we have

"7 (t,2,y) — DV P (t, 2, 9)]

//ﬁ (t = s5,2,2) = PP (t — 5,2,2)] - [b(2)

C t)k // pP(t —s,x,2) - |b(2)] - \VZpD(s,z,y)|dzds
< CoC)" P (t, x,y).

|V.pP (s, 2,y)|dzds

Since C'(t) < 1, letting k — oo, we obtain the uniqueness.
(i) By choosing Ty smaller if necessary, we can assume that C(Tp) < 1. It
then follows from (25) that for every t € (0,Tp] and x,y € D,

R
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which means that (7) is true. Moreover, by (26) and Fubini’s theorem, we have
oo
ﬁb’D(taxa y) = Zpk(tvxvy)
k=0

0t
:pD(taIay)+Z// po(t—s,x,z)b(z)~Vzpk(5,z,y)dzds
k=070"D

t
= pD(t,x, y) + // po(t — s,x,2)b(2) - sz)b’D(s, z,y)dzds,
0/D

that is (8).
(ii) By Fubini’s theorem, we have for all 0 < s < ¢t < Ty,

/ PrP(t —s,2,2)p"P (s, 2,y)dz = Z Z / D (t — 8,2, 2)Pn—m (8, 2, y)dz.
D D

n=0m=0

Thus, to prove (9) for 0 < s < t < Ty, it suffices to show that for each n € Ny,

(30) 3 / Dt — 5,2, 2)pnm(5, 2, 9)dz = pu (1, 2,).
m=0 D

It is clear that the above equality holds for n = 0. Suppose now that it holds
for some n € N. Write

n+1
Z / pm(t - S, "E,Z)anrl,m(S, Zay)dz = jl + \72»
m=0"D

where
J1 = / pn—&-l(t — S,QS‘,Z)pO(SVZay)dZ
D

and
n
jZ = Z / phL(t - vaaz)pn"rl_m(s’z’y)dz'
m=0"D

By (23) and Fubini’s theorem, we have

t—s
Jl = / (/ / pn(t — 85— rvmvu)b(u) : vupO(rauv Z)d’LLdT’) pO(Sv Z,y)dZ
D 0 D

t—s
— / / pu(t —s—r z,u)b(u) - (/ Vupo(r,u, 2)po(s, z, y)dz) dudr
o Jp D
t
= // pr(t — rx,u)b(u) - Vupo(r,u, y)dudr.
sJ D

Similarly, by (23) and the induction hypothesis, we have

jg:// pn(t—r,x,u)b(u)-Vupo(,r,u7y)dudr'
0JD
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Hence,
¢
jl + \72 = // pn(t -n, U)b(u) ! vupo(ra u, y)dUdr = pn+1(t7 €z, y)a
0JD

which gives (30).

We now extend the function p* (t, x, y) from (0, T]x Dx D to (0,00) x Dx D
via the Chapman-Kolmogorov equation. Then it is routine to extend the above
assertions (i)-(ii) on (0 To] to (0,7 for any T > 0.

(iii) Let PP f(x po (t,z,y)f(y)dy. By (3), we have for all f € C%(D),
t>0and x € D,

(31) PP f(w) = PP f(a) / PY2 (5 VPP ) (@)ds
It then follows that for all f € C2(D), t > 0 and z € D,
PP ()~ 1(0) = PPS) ~ 1) + [ P20 VED p) s
(32) -/ PP (A p ) ()ds + / EBD(h- VPP f) a)ds

Using (31) and Fubini’s theorem, we get that for all f € C?(D), t > 0 and
z €D,

[ PR e - [ P2 a b @as
0

/ / (b- VPP A2 £ (z)drds
:// PY2(b- VPP A2\, f)(x)dids
0Js

- / P (b v / ' P,Psw/%f)ds) ()7
0 0

_ /Ot P2 (b-V(PPf - f)(x)) dF

Combining this with (32), we obtain that for all f € C?(D), t > 0 and z € D,

pbD B _ tPtb,D I b. v ds,
PP @) = 1) = [ PED (81541 9) f(a)as

which gives (10) for all f € C2(D),t >0 and z € D.
(iv) Since pP(t,x,y) is the transition density of X, for any uniformly con-
tinuous function f(x) with compact supports, we have

. Dy _
lim [ PP = flloc = 0.
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Meanwhile, by (6) and Lemma 3.1 we have

(// P (t — s, 2,2)b(2) - VZPD(s,z,y)dzds>f(y)dy’

<Isl [( [ /D P70 = s, 2 9.0 5,210 )

c<t>||f||oo/ D(t,2,5)dy < CO)]1f o,

where C(t) — 0 as t — 0, which yields (11) by (3). The whole proof is
finished. O

Finally, following the idea in [11] we can give:

Proof of Corollary 1.6. By the two-sided heat kernel estimates (6), there exists
a constant C' > 0 such that for every ¢t € (0,1] and z,y € D,

=b,D T 1 _ /2 _ dta
]fbD(t,x,z) < Cof]v(t,ac) Ql(t,x 2) <C (1v p(w)) <1 y |361 yI) .

Therefore, for any non-negative function f € %,(D), t € (0,1) and z,y € D,
we have

b,D t x,z)
P, “17 D(t,y, z ’D(ta y,2)f(z)dz

(t,x, z) 5D
< | sup / (t,y, dz
\<z€D~thy7 ) Uz ()

a/2 . d+o
<c<1v’;g§> <1v|ﬁ1/ay|) PP f(y),

thus (12) holds for t € (0,1]. For T' > 1, we can write by (30) that
b,D b,D b, D
Py~ f(x) = P P f(x).
This together with the above inequality yields the desired result. O
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