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STABILITY IN THE α-NORM FOR

SOME STOCHASTIC PARTIAL FUNCTIONAL

INTEGRODIFFERENTIAL EQUATIONS

Mamadou Abdoul Diop, Khalil Ezzinbi, and Modou Lo

Abstract. In this work, we study the existence, uniqueness and stability
in the α-norm of solutions for some stochastic partial functional integrod-

ifferential equations. We suppose that the linear part has an analytic re-

solvent operator in the sense given in Grimmer [8] and the nonlinear part
satisfies a Hölder type condition with respect to the α-norm associated

to the linear part. Firstly, we study the existence of the mild solutions.
Secondly, we study the exponential stability in pth moment (p > 2). Our

results are illustrated by an example. This work extends many previous

results on stochastic partial functional differential equations.

1. Introduction

The purpose of this work is to study the existence, uniqueness and stability
results for stochastic partial functional integrodifferential equations with finite
delay of the following form

(1.1)


d

dt
u(t) = Au(t) +

∫ t

0

B(t− s)u(s)ds+ F (t, ut)

+G(t, ut)dw(t) for t ≥ 0,

u0 = ϕ ∈ CF0

(
[−r, 0], D

(
(−A)α

))
,

where r > 0, A is the infinitesimal generator of an analytic semigroup
(
T (t)

)
t≥0

on a separable Hilbert space H, B(t) is a closed linear operator with domain
D(B(t)) ⊃ D(A). For t ≥ 0, ut denotes, as usual, the element of Cα defined
by ut(θ) = u(t+ θ) for θ ∈ [−r, 0]. The mappings F : R+ ×Cα → H, and G :
R+×Cα → L(K,H) are borel measurable. The spaces CF0

([−r, 0], D((−A)α))
and Cα are defined later.
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Stochastic partial functional differential equations with finite delays are very
important as stochastic models of biological, chemical, physical and economical
systems. The qualitative properties (existence, stability, invariant measures,
controllability and others) of solutions of these systems have been studied by
many authors. It is well known that these topics have been developed mainly
by using two different methods, that is, the semigroup approach (for example,
Da Prato et al. [1], Liu [10], Kolmanovskii et al. [9], Wu [18] and references
therein) and the variational one (for example, Pardoux [16]).

Integrodifferential equations can be used to describe a lot of natural phe-
nomena arising from many fields such as electronics, fluid dynamics, biological
models, and chemical kinetics. Most of these phenomena cannot be described
through classical differential equations. That is why in recent years they have
attracted more and more attention of several mathematicians, physicists, and
engineers. Some topics for this kind of equations, such as existence and reg-
ularity, stability, (almost) periodicity of solutions and control problems, have
been investigated by many authors, for example, we refer to [2–6,11].

In [14], Taniguchi et al., using only a local Lipschitz condition, studied exis-
tence and p-th moment (p > 2) exponential stability problems in the α-norm of
mild solutions of the following class of stochastic partial functional differential
equations with finite delays

(1.2)

dX(t) = [−AX(t) + f(t,Xt)]dt+ g(t,Xt)dw(t) for t ≥ 0

X0 = φ ∈ Lp
(

Ω, Cα

)
,

where φ is F0-measurable and −A generates an analytic semigroup on a sepa-
rable Hilbert space H, f and g are two measurable mappings.

In [6], Govindan considered a class of stochastic partial functional differential
equations, in a real separable Hilbert space, of the following form

(1.3)

{
dx(t) = [Ax(t) + f(t, xt)]dt+ g(t, xt)dw(t) for t > 0

x(t) = ϕ(t) for t ∈ [−r, 0].

The author studied the exponential stability of the quadratic moments, (that
is when p = 2) and also studied asymptotic stability in probability of mild
solutions in the α-norm, assumed general conditions of the Hölder type on
the nonlinear terms, instead of the Lipschitz condition and use the method of
successive approximations and a comparison principle.

Motivated by [6], we aim to study the existence, uniqueness and exponential
stability of mild solutions in the α-norm of Eq. (1.1) by using the theory of
resolvent operators and Picard type iteration. Recall that the resolvent opera-
tor plays an important role in solving Eq. (1.1) in the weak and strict sense, it
replaces the role of the C0-semigroup theory, for more details we refer to [7,8].

The work is organized as follows. In Section 2, we recall the preliminaries
facts which are used throughout this work. In Section 3, we state the existence
and uniqueness of a mild solution. In Section 4, we study the exponential
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stability in p-th moment (p > 2) and in Section 5, we give an example to
illustrate the basic theory of this work.

2. Preliminaries

2.1. Wiener process

Throughout this work, (Ω,F , {Ft}t≥0 ,P) is a complete probability space with

a normal filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is increasing
and right-continuous while F0 contains all P-null sets), H and K are two real
separable Hilbert spaces; we denote by 〈·, ·〉H, 〈·, ·〉K their inner products and
by ‖·‖H , ‖·‖K their vectors norms, respectively. We denote by L(H,K) the
space of all bounded linear operator from H into K, equipped with the usual
operator norm ‖·‖. We use the same symbol ‖·‖ to denote norms of operators
regardless of the spaces potentially involved when no confusion possibly arises.
CF0

([−r, 0];D((−A)α)) denotes the family of all almost surely bounded, F0-
measurable, Cα-valued random variables. Cα will be defined later.

Let {w(t) : t ≥ 0} be a K-valued Wiener process defined on the probability
space (Ω,F , {Ft}t≥0,P) with covariance operator Q; that is,

E 〈w(t), x〉K 〈w(s), y〉K = (t ∧ s) 〈Qx, y〉K
for all x, y ∈ K, where Q is a positive, self-adjoint, trace class operator on
K. In particular, we denote w(t) a K-valued Q-Wiener process with respect
to {Ft}t≥0. To define the stochastic integrals with respect to the Q-Wiener

process w(t), we introduce the subspace K0 = Q1/2K of K endowed with
the inner product 〈u, v〉K0

=
〈
Q−1/2u,Q−1/2v

〉
K as a Hilbert space. We as-

sume that there exist a complete orthonormal system {ei} in K, a bounded
sequence of nonnegative real numbers λi such that Qei = λiei, i = 1, 2, . . .,
and a sequence {βi(t)}i>1 of independent standard Brownian motions such

that w(t) =
∑+∞
i=1

√
λiβi(t)ei for t ≥ 0 and Ft = Fwt , where Fwt is the

σ-algebra generated by {w(s) : 0 ≤ s ≤ t}. Let L0
2 = L2(K0,H) be the

space of all Hilbert-Schmidt operators from K0 to H. It turns out to be a
separable Hilbert space equipped with the norm ‖v‖2L0

2
= tr((vQ1/2)(vQ1/2)∗)

for any v ∈ L0
2. For any bounded operator v ∈ L0

2, its norm is reduced to

‖v‖2L0
2

= tr(vQv∗).

2.2. Fractional power of closed operators and partial integrodiffer-
ential equations in Banach spaces

In this section, we recall some fundamental results to establish our results.

2.2.1. Fractional power. Let X be a Banach space and A : D(A) ⊂ X −→ X be
the infinitesimal generator of an analytic semigroup

(
T (t)

)
t≥0

. Y is the Banach

space formed from D(−A) equipped with the graph norm ‖y‖Y = ‖Ay‖+ ‖y‖
for y ∈ D(A).
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Let 0 ∈ ρ(−A) (the resolvent set of −A). If 0 /∈ ρ(−A), one can substitute
the operator −A by the operator (−A + σI) with σ large enough such that
0 ∈ ρ(−A + σI). Then, without loss of generality, we can assume that 0 ∈
ρ(−A). We define the fractional power (−A)α for 0 < α ≤ 1, as a closed linear
invertible operator on its domain D((−A)α) with inverse (−A)−α, by

(−A)−α =
1

Γ(α)

∫ ∞
0

tα−1T (t)dt,

where Γ is the gamma function.
We have the following basic properties on (−A)α.

Theorem 2.1 ([12]). Let A be the infinitesimal generator of an analytic semi-
group

(
T (t)

)
t≥0

. If 0 ∈ ρ(−A), then, for 0 < α < 1, the following properties

hold.

(i) Yα = D((−A)α) is a Banach space with the norm ‖x‖α = ‖(−A)αx‖
for x ∈ D((−A)α);

(ii) (−A)−α is the closed linear operator with Im((−A)−α) = D((−A)α)
and we have (−A)α = ((−A)−α)−1;

(iii) (−A)−α ∈ L(X,X);
(iv) T (t) : X→ Yα for every t > 0;
(v) (−A)αT (t)x = T (t)(−A)αx for each x ∈ D((−A)α) and t ≥ 0;
(vi) 0 < α ≤ β implies D((−A)β) ↪→ D((−A)α);

(vii) There exists Mα > 1 such that

‖(−A)αT (t)x|| ≤Mα
e−δt

tα
‖x‖ for x ∈ X and t > 0,

where δ > 0 is a constant.

We denote by Cα = C
(
[−r, 0];Yα

)
the Banach space of continuous functions

φ : [−r, 0]→ Yα provided with the supremum norm

‖φ‖α = sup
−r≤θ≤0

‖φ(θ)‖α for φ ∈ Cα.

2.2.2. Resolvent operators. Now, we collect definitions and basic results about
the theory of resolvent operator, see [7, 8] for more details.

Definition 2.2 ([7]). A family of bounded linear operators (R(t))t≥0 in L(X)
is called resolvent operator for the following equation

(2.1)


d

dt
u(t) = Au(t) +

∫ t

0

B(t− s)u(t)ds for t ≥ 0

u(0) = u0 ∈ X,

if

(a) R(0) = I and ‖R(t)‖ ≤ N1 exp(βt) for some constants N1 ≥ 1 and
β ∈ R;

(b) for all x ∈ X, R(t)x is continuous for t ≥ 0;
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(c) R(t) ∈ L(Y) for t ≥ 0. For x ∈ Y, R(·)x ∈ C1(R+,X) ∩ C(R+,Y) and
for t ≥ 0, we have

R′(t)x = AR(t)x+

∫ t

0

B(t− s)R(s)xds(2.2)

= R(t)Ax+

∫ t

0

R(t− s)B(s)xds.

Definition 2.3. A resolvent operator (R(t))t≥0 is said to be exponentially
stable if there exist positive constants M1 and a1 such that ‖R(t)‖ ≤M1e

−a1t

for t ≥ 0.

Next, we assume the following hypotheses taken from [17].

Let B̂ be the Laplace transform of B and R(λ,A) = (λI−A)−1 the resolvent
operator of A.

(H1) The operator A : D ⊆ X → X is the infinitesimal generator of an
analytic semigroup

(
T (t)

)
t≥0

on X and there are constants M0 > 0, σ ∈
R and ϑ ∈ (π/2, π) such that ρ(A) ⊇ Λσ,ϑ = {λ ∈ C : λ 6= σ, |arg(λ−
σ)| < ϑ} and ‖R(λ,A)‖ ≤M0/|λ− σ| for all λ ∈ Λσ,ϑ.

(H2) For all t ≥ 0, B(t) : D(B(t)) ⊆ X → X is a closed linear operator
D(A) ⊆ D(B(t)), and B(·)x is strongly measurable on (0,+∞) for

each x ∈ D(A). There exists b(·) ∈ L1
loc(R+) such that b̂(λ) exists for

Re(λ) > 0 and ‖B(t)x‖ ≤ b(t) ‖x‖1 for all t > 0 and x ∈ D(A).

Moreover, the operator valued function B̂ : Λσ,π/2 → L(D(A),X)

has an analytical extension (still denoted by B̂) to Λσ,ϑ such that∥∥∥B̂(λ)x
∥∥∥ ≤ ∥∥∥B̂(λ)

∥∥∥ ‖x‖1 for all x ∈ D(A) and
∥∥∥B̂(λ)

∥∥∥ = O(1/|λ|)
as λ→∞.

(H3) There exist a subspace D ⊆ D(A) dense in [D(A)] and a positive con-

stant C1 such that A(D) ⊆ D(A), B̂(λ)(D) ⊆ D(A) and
∥∥∥AB̂(λ)x

∥∥∥ ≤
C1 ‖x‖ for every x ∈ D and for all λ ∈ Λβ0,ϑ.

In the sequel, for r0 > 0, θ0 ∈ (π/2, ϑ) and β0 ∈ R, set

Λr0,β0,θ0 = {λ ∈ C : |λ− β0| > r0, |arg(λ− β0)| < θ0},
and for β0 + Γir0,θ0 , i = 1, 2, 3, the paths

β0 + Γ1
r0,θ0 =

{
β0 + teiθ0 : t ≥ r0

}
,

β0 + Γ2
r0,θ0 =

{
β0 + r0e

iξ : −θ0 ≤ ξ ≤ θ0

}
,

β0 + Γ3
r0,θ0 =

{
β0 + te−iθ0 : t ≥ r0

}
,

with β0 + Γr0,θ0 = ∪3
1β0 + Γir0,θ0 are oriented counterclockwise.

The resolvent operator plays an important role to study the existence of
solutions and to give a variation of constants formula for nonlinear systems.
We need to know when Eq. (2.1) has a resolvent operator. The following
theorem gives a satisfactory answer to this problem.
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Theorem 2.4 ([17]). Suppose that the assumptions (H1)-(H3) hold. Then
Eq. (2.1) admits a resolvent operator given by

(2.3) R(t) =


1

2πi

∫
β0+Γr0,θ0

eλt
(
λI −A− B̂(λ)

)−1
dλ for t > 0,

I for t = 0.

Moreover, there exists a positive constant N1 such that

(2.4) ‖(−A)αR(t)‖ ≤

 N1e
(r0+β0)t for t ≥ 1,

N1e
(r0+β0)tt−α for t ∈ (0, 1),

and R(t) has as analytic extension.

Remark 2.5. If r0 + β0 < 0 and α ∈ (0, 1), then there exists ϕ ∈ L1(R+) such
that

‖(−A)αR(t)‖ ≤ ϕ(t) for t ≥ 0.

Motivated by Grimmer [7], we adopt the following concepts of mild and
strict solutions for the following non-homogeneous system.

(2.5)

v
′
(t) = Av(t) +

∫ t

0

B(t− s)v(s)ds+ q(t) for t ≥ 0,

v(0) = v0 ∈ X,

where q : [0,+∞[→ X is a continuous function.

Definition 2.6 ([7]). A continuous function v : [0,+∞) → X is said to be a
strict solution of Eq. (2.5) if

(i) v ∈ C1([0,+∞);X) ∩ C([0,+∞);Y),
(ii) v satisfies Eq. (2.5) for t ≥ 0.

Remark 2.7. From this definition, we deduce that v(t) ∈ D(A), the function
B(t− s)v(s) is integrable for all t ≥ 0 and s ∈ [0, b].

Theorem 2.8 ([7]). If v is a strict solution of Eq. (2.5), then

(2.6) v(t) = R(t)v0 +

∫ t

0

R(t− s)q(s)ds for t ≥ 0.

Accordingly, we make the following definition.

Definition 2.9 ([7]). For v0 ∈ X, a function v : [0,+∞)→ X is called a mild
solution of Eq. (2.5) if v satisfies the variation of constants formula (2.6).

The next theorem provides sufficient conditions for the regularity of solutions
of Eq. (2.5).

Theorem 2.10 ([7]). Let q ∈ C1([0,+∞);X) and v be defined by (2.6). If
v0 ∈ D(A), then v is a strict solution of Eq. (2.5).
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3. Existence and uniqueness of the mild solution of Eq. (1.1)

In this section, we consider the existence and uniqueness of a mild solution
of Eq. (1.1) using Hölder type conditions.

Definition 3.1. Let b > 0. A process {u(t), 0 ≤ t ≤ b} is called a mild
solution of Eq. (1.1) if

(i) u(t) is Ft-adapted for t ≥ 0 with
∫ b

0
‖u(t)‖p dt < +∞ a.s.

(ii) u(t) ∈ H has continuous paths on t ∈ [0, b] a.s. and u satisfies the
following system

(3.1)



u(t) = R(t)ϕ(0) +

∫ t

0

R(t− s)F (s, us)ds

+

∫ t

0

R(t− s)G(s, us)dw(s) for t ∈ [0, b],

u0 = ϕ ∈ CF0

(
[−r, 0], D

(
(−A)α

))
.

To guarantee the existence and uniqueness of mild solutions of Eq. (1.1), we
suppose the following conditions.

(H4) There exists a function H : R+ × R+ → R+ that is integrable with
respect to the first argument and is continuous monotone nondecreasing
with respect to the second argument such that

E ‖F (t, ζ)‖pH + E ‖G(t, ζ)‖pL0
2
≤ H(t,E ‖ζ‖pα) for t ≥ 0.

(H5) (a) There exists a function Z : R+ × R+ → R+ which is locally
integrable with respect to the first argument and continuous, mono-
tone nondecreasing with respect to the second argument. Moreover,
Z(t, 0) = 0 and

E ‖F (t, ζ)− F (t, η)‖pH + E ‖G(t, ζ)−G(t, η)‖pL0
2
≤ Z(t,E ‖ζ − η‖pα) for t ≥ 0.

(b) If a nonnegative, continuous function ζ satisfies ζ(0) = 0 and

ζ(t) ≤ C
∫ t

0

Z(s, ζ(s))ds for t ≥ 0,

where C > 0, then ζ(t) = 0 for all t ≥ 0.
(H6) For any constant D > 0, the following differential equation

(3.2)


dx

dt
= DH(t, x) for t ≥ 0,

x(0) = x0,

has a global solution on R+ for any initial value x0 > 0.

One can observe that a solution of Eq. (3.2) is nondecreasing on R+. The
following lemmas are needed in the next.
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Lemma 3.2 ([1]). For any p ≥ 2 and for arbitrary L0
2-valued predictable process

Φ(·),

sup
0≤s≤t

E
∥∥∥∥∫ s

0

Φ(l)dw(l)

∥∥∥∥p ≤ Cp(∫ t

0

E ‖Φ(l)‖2 dl
)p/2

for t ≥ 0,

where Cp =
(
p(p−1)

2

)p/2
.

Lemma 3.3 ([13]). Let L : R+×R+ → R+ be a continuous, monotone nonde-
creasing function with respect to the second argument and locally integrable with
respect to the first argument. Suppose that there exist two continuous functions
γ1 and γ2 defined on [s, θ), s ≥ 0, satisfying the following inequality

γ1(t)−
∫ t

s

L(τ, γ1(τ))dτ < γ2(t)−
∫ t

s

L(τ, γ2(τ))dτ for t ∈ [s, θ).

If γ1(s) < γ2(s), then γ1(t) < γ2(t) for all t ∈ [s, θ).

First of all, we introduce the following iteration procedure:

u0(t) = ϕ(t) for t ∈ [−r, 0],

u0(t) = R(t)ϕ(0) for t ∈ [0, b]

and for n ∈ N, n ≥ 1,

un(t) = ϕ(t) for t ∈ [−r, 0],

un(t) = R(t)ϕ(0) +

∫ t

0

R(t− s)F (s, un−1
s )ds(3.3)

+

∫ t

0

R(t− s)G(s, un−1
s )dw(s) for t ∈ [0, b]

with an arbitrary nonnegative initial value ϕ ∈ Bα. Here Bα is the space
of all Ft-measurable stochastic process φ : Ω → Cα endowed with the norm
‖φ‖pBα := E‖φ‖pα <∞.

Theorem 3.4. Let 0 < α < p−2
2p . Suppose that (H1)-(H6) hold. Then

Eq. (1.1) has a unique mild solution u defined on R+. Moreover, for any b > 0,
we have

E
(

sup
0≤t≤b

‖un(t)− u(t)‖pα
)
→ 0 as n→∞.

Proof. Let b > 1. We claim that the solution exists on [0, b].
Indeed, let Dα be the space of all continuous functions z : [−r, b]→ H such

that

‖z‖Dα := sup
0≤t≤b

(
E‖zt‖pα

)1/p
<∞.

Then Dα is a Banach space.
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Set

(3.4) M = sup
0≤t≤b

‖R(t)‖ and K = N1 max{e(r0+β0)b,, 1}.

From (3.3) for n = 1 and for any 0 ≤ s ≤ b, we have

E
∥∥(−A)αu1(s)

∥∥p
≤ 3p−1E ‖(−A)αR(s)ϕ(0)‖p + 3p−1E

∥∥∥∥∫ s

0

(−A)αR(s− l)F (l, u0
l )dl

∥∥∥∥p
+ 3p−1E

∥∥∥∥∫ s

0

(−A)αR(s− l)G(l, u0
l )dw(l)

∥∥∥∥p
=: 3p−1(Ip1 (s) + Ip2 (s) + Ip3 (s)).

We have Ip1 (t) ≤MpE ‖ϕ‖pα.
We consider two cases : t ∈ (0, 1) and t ∈ [1, b].
Let t ∈ (0, 1). By using Hölder’s inequality, Lemma 3.2 and (H4), we obtain

that

Ip2 (t) ≤ Kp bp(1−α)−1(
p(1−α)−1

p−1

)p−1

∫ t

0

H(s,E
∥∥u0

s

∥∥p
α

)ds,

Ip3 (t) ≤ KpCp
b
p(1−2α)−2

2(
p(1−2α)−2

p−2

) p−2
2

∫ t

0

H(s,E
∥∥u0

s

∥∥p
α

)ds.

Hence, we have

(3.5) E
∥∥u1

t

∥∥p
α
≤ 3p−1MpE ‖ϕ‖pα + C0

∫ t

0

H(s,E
∥∥u0

s

∥∥p
α

)ds,

where C0 = 3p−1Kp

 bp(1−α)−1(
p(1−α)−1

p−1

)p−1 + Cp
b
p(1−2α)−2

2(
p(1−2α)−2

p−2

) p−2
2

. �

Lemma 3.5. Let xm be the global maximum solution of Eq. (3.2) for x0 >
max

(
3p−1MpE ‖ϕ‖pα ,E ‖ϕ‖

p
α

)
. Then

(3.6) E ‖unt ‖
p
α < xm(t) for n ∈ N, n ≥ 1 and t ∈ [0, b].

Proof of Lemma 3.5. We have

(3.7) xm(t) = x0 + C0

∫ t

0

H(s, xm(s))ds.

By the hypothesis (H4), we obtain that
∫ t

0
H(s, xm(s))ds ≥ 0. Hence, xm(s) ≥

x0.
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Choose x0 such that x0 > max
(
3p−1MpE ‖ϕ‖pα ,E ‖ϕ‖

p
α

)
. Therefore, by

(3.5) and (3.7), we obtain that

0 ≤ C0

∫ t

0

[
H(s, xm(s))ds−H(s,E

∥∥u0
s

∥∥p
α

)ds
]
< xm(t)− E

∥∥u1
t

∥∥p
α
,

which means that

(3.8) E
∥∥u1

t

∥∥p
α
< xm(t) for t ∈ [0, b].

Proceeding as above, we show that

E
∥∥un+1

t

∥∥p
α

≤ 3p−1MpE ‖ϕ‖pα + C0

∫ t

0

H(s,E ‖uns ‖
p
α)ds for n ∈ N∗ and t ∈ [0, b].

Let n ∈ N∗. Suppose that E
∥∥ukt ∥∥pα < xm(t) for k ≤ n and t ∈ [0, b]. Then

E
∥∥uk+1

t

∥∥p
α
≤ 3p−1MpE ‖ϕ‖pα + C0

∫ t

0

H(s,E
∥∥uks∥∥pα)ds

< x0 + C0

∫ t

0

H(s, xm(s))ds = xm(t).

Therefore, the inequality (3.6) holds. This ends the proof of Lemma 3.5. �

We deduce that (un)n≥1 is uniformly bounded in Dα.
We claim that (un)n≥1 is a Cauchy sequence in Dα. In fact, define the

sequence of functions rn : [0, b]→ R by

rn(t) = sup
m≥n

E‖um+n
t − unt ‖pα for t ∈ [0, b] and n ∈ N.

Note that for each n ∈ N, rn is well-defined, uniformly bounded and non-
decreasing (with respect to t). Since {rn, n ≥ 1} is nonincreasing, for each
t ∈ [0, b], there exists a function r : [0, b]→ R such that

(3.9) lim
n→+∞

rn(t) = r(t) for all t ∈ [0, b].

Proceeding as above, we show that

E
∥∥um+n+1

t − un+1
t

∥∥p
α
≤ C1

∫ t

0

Z(s,E
∥∥um+n

t − unt
∥∥p
α

)ds,

where C1 = 2p−1Kp

 bp(1−α)−1(
p(1−α)−1

p−1

)p−1 + Cp
b
p(1−2α)−2

2(
p(1−2α)−2

p−2

) p−2
2

, which implies that

r(t) ≤ rn+1(t) ≤ C1

∫ t

0

Z(s, rn(s))ds for n ∈ N.
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From (3.9) and the Lebesgue dominated convergence theorem, we obtain that

r(t) ≤ C1

∫ t

0

Z(s, r(s))ds.

Therefore, by (H5)-(b), E
∥∥um+n

t − umt
∥∥p
α
→ 0 as m→∞ and every n, which

implies that (un)n≥1 is a Cauchy sequence in Dα.
Let u = limn→∞ un. Now, we claim that u is a mild solution of Eq. (1.1).

In fact, we have

E
∥∥∥∥un(t)−[R(t)ϕ(0)+

∫ t

0

R(t− s)F (s, us)ds+

∫ t

0

R(t− s)G(s, us)dw(s)]

∥∥∥∥p
α

≤ C1

∫ t

0

Z(s,E
∥∥un−1

s − us
∥∥p
α

)ds

→ 0 as n→∞,

which proving the claim.
In the case t ∈ [1, b], by given appropriate values to the constant C0 and C1,

the above results hold.
The uniqueness follows from assumption (H5). Recall that b is any positive

number and hence the obtained solution u is global.

4. Almost sure exponential stability of Eq. (1.1)

In this section, we consider the almost sure exponential stability of the sec-
ond moment of a trivial solution of Eq. (1.1). For this goal, we suppose that:

(H7) (a) The resolvent operator (R(t))t≥0 given by (H1)-(H3) is exponen-
tially stable.

(b) −a2 := r0 + β0 < 0. Thus, we have the following estimation

(4.1) ‖(−A)αR(t)‖ ≤

{
N1e

−a2t for t ≥ 1,

N1e
−a2tt−α for t ∈ (0, 1).

(H8) There exist nonnegative real numbers Q1, Q2 ≥ 0 and continuous func-
tions
ν1, ν2 : R+ → R+ such that

E ‖F (t, ζ)‖p ≤ Q1E ‖ζ‖pα+ν1(t) and E ‖G(t, ζ)‖p ≤ Q2E ‖ζ‖pα+ν2(t) for t ≥ 0.

Moreover, there exist nonnegative real numbers P1, P2 ≥ 0 and β >
a := min{a1, a2} > 0 such that

νi(t) ≤ Pie−βt for i = 1, 2 and t ≥ 0.

Now assume that F (t, 0) = G(t, 0) = 0 for almost every t, means that
Eq. (1.1) admits a trivial solution. Let u(t) = u(t, ϕ) be a solution of Eq. (1.1)
where ϕ is any past process.
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Theorem 4.1. Assume that (H1)-(H8) hold. Let 0 < α < p−2
2p and N =

max{M1, N1}. Then there exist constants C and θ > 0 such that the mild
solution u of Eq. (1.1) satisfies the following inequality

E ‖u(t)‖pCα ≤ Ce
−θt for t ∈ [0, b],

provided that

(4.2) λ = 3p−1Np
(
λ1Q1 + λ2Q2

)
< a,

where θ = a− λ and for t ∈ (0, 1), we have

λ1 =
(

Γ(1− qα)aqα−1
) p
q

, λ2 = Cp

(
Γ(1− 2q′α)

(
(2a− 2a

p
)q′
)2αq′−1

) p
2q′

and for t ≥ 1, we have

λ1 =
( 1

2a

) p−2
2

, λ2 =
1

ap−1
,

with q = p
p−1 and q′ = p

p−2 .

Proof. We have

‖(−A)αu(s)‖ ≤ ‖(−A)αR(s)ϕ(0)‖+

∥∥∥∥∫ s

0

(−A)αR(s− l)F (l, ul)dl

∥∥∥∥
+

∥∥∥∥∫ s

0

(−A)αR(s− l)G(l, ul)dw(l)

∥∥∥∥ .
Let b > 1. We distinguish two cases : t ∈ (0, 1) and t ∈ [1, b].
Case 1: t ∈ (0, 1).

We have

E ‖ut‖pα ≤ 3p−1Npe−patE ‖ϕ‖pα + 3p−1NpE
(∫ t

0

(t− s)−αe−a(t−s) ‖F (s, us)‖ ds
)p

+ 3p−1Np

(∫ t

0

(t− s)−2αe−2a(t−s)E ‖G(s, us)‖2 ds
) p

2

=: 3p−1Np(J1(t) + J2(t) + J3(t)).(4.3)

By using Hölder’s inequality and (H8), we obtain that

J2 ≤
(∫ t

0

(t− s)−qαe−a(t−s)ds

) p
q
∫ t

0

e−a(t−s)E ‖F (s, us)‖p ds

≤ λ1

∫ t

0

e−a(t−s)
(
Q1E ‖us‖pα + ν1(s)

)
ds

≤ λ1

∫ t

0

e−a(t−s)
(
Q1E ‖us‖pα + P1e

−βs
)
ds.(4.4)



STABILITY IN THE α-NORM 161

By Lemma 3.2 and proceeding as above, we deduce that

J3(t) ≤ Cp
(∫ t

0

(t− s)−2αe−2a(t−s)E ‖G(s, us)‖2 ds
)p/2

≤ Cp
(∫ t

0

(t− s)−2αe−(2a− 2a
p )(t−s)e−

2a
p (t−s)E ‖G(s, us)‖2L0

2
ds

)p/2
≤ λ2

∫ t

0

e−a(t−s)
(
Q2E ‖us‖pα + P2e

−βs
)
ds.(4.5)

Case 2: t ∈ [1, b].

We have

E ‖ut‖pα ≤ 3p−1Npe−patE ‖ϕ‖pα + 3p−1NpE
(∫ t

0

e−a(t−s) ‖F (s, us)‖ ds
)p

+ 3p−1Np

(∫ t

0

e−2a(t−s)E ‖G(s, us)‖2 ds
) p

2

=: 3p−1Np(J
′

1(t) + J
′

2(t) + J
′

3(t)).(4.6)

By using Hölder’s inequality and (H4), we obtain that

J
′

2(t) ≤
(∫ t

0

e−a(t−s)ds

) p
q
∫ t

0

e−a(t−s)E ‖F (s, us)‖p ds

≤ 1

ap−1

∫ t

0

e−a(t−s)
(
Q1E ‖us‖pα + ν1(s)

)
ds

≤ 1

ap−1

∫ t

0

e−a(t−s)
(
Q1E ‖us‖pα + P1e

−βs
)
ds.(4.7)

By Lemma 3.2 and proceeding as above, we deduce that

J
′

3(t) ≤ Cp
(∫ t

0

e−2a(t−s)E ‖G(s, us)‖2 ds
)p/2

≤ Cp
(∫ t

0

e−(2a− 2a
p )(t−s)e−

2a
p (t−s)E ‖G(s, us)‖2L0

2
ds

)p/2
≤
( 1

2a

) p−2
2

∫ t

0

e−a(t−s)
(
Q2E ‖us‖pα + P2e

−βs
)
ds.(4.8)

Therefore, from (4.3), (4.4), (4.5), (4.6), (4.7) and (4.8), for t ∈ [0, b], we obtain
that

E ‖ut‖pα ≤ 3p−1Npe−patE ‖ϕ‖pα + λ1

∫ t

0

e−a(t−s)
(
Q1E ‖us‖pα + P1e

−βs
)
ds

+ λ2

∫ t

0

e−a(t−s)
(
Q2E ‖us‖pα + P2e

−βs
)
ds.(4.9)
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Thus,

eatE ‖ut‖pα ≤ 3p−1NpE ‖ϕ‖pα + 3p−1Npb(λ1P1 + λ2P2)

+ 3p−1Np(λ1Q1 + λ2Q2)

∫ t

0

easE ‖us‖pα ds

≤ C + λ

∫ t

0

easE ‖us‖pα ds,

where C = 3p−1NpE ‖ϕ‖pα + 3p−1Npb(λ1P1 + λ2P2) and λ = 3p−1Np(λ1Q1 +
λ2Q2).

Letting θ = a− λ and invoking Gronwall’s Lemma, we get that

E ‖ut‖pα ≤ Ce
−θt for t ∈ [0, b]. �

5. Exponential stability in p-th moment

In this section, we study the exponential stability in p-th moment of the
mild solution of Eq. (1.1).

Definition 5.1. Eq. (1.1) is said to be exponentially stable in p-th moment if
there exist a pair of positive constants λ and K∗ such that the mild solution
satisfies the following estimation

E ‖u(t)‖pα ≤ K
∗E ‖ϕ‖pα e

−λt for t ≥ 0.

In order to establish the exponential stability in p-th moment, firstly we
consider a result that gives an estimate for the solution of Eq. (1.1). For this
goal, we need the following further assumption:

(H9) The function H in (H4) satisfies

δH(t, η) ≤ H(t, δη) for all δ > 1, η ∈ R+ and t ≥ 0.

Proposition 5.2. Assume that (H1)-(H7) and (H9) hold. Then the mild
solution u of Eq. (1.1) satisfies

eatE ‖ut‖pα < xm(t) for t ≥ 0,

where xm(t) is the global solution of Eq. (3.2) with

x0 > max
(
3p−1NpE‖ϕ‖pα, E‖ϕ‖pα

)
.

Proof. We have

‖(−A)αu(s)‖p ≤ 3p−1 ‖(−A)αR(s)ϕ(0)‖p + 3p−1

∥∥∥∥∫ s

0

(−A)αR(s− l)F (l, ul)dl

∥∥∥∥p
+ 3p−1

∥∥∥∥∫ s

0

(−A)αR(s− l)G(l, ul)dw(l)

∥∥∥∥p .
By using (H9), Hölder’s inequality, Lemma 3.2 and (H4), we obtain that

E ‖ut‖pα ≤ 3p−1Npe−aptE ‖ϕ‖pα+ 3p−1Np(λ1 +λ2)

∫ t

0

e−a(t−s)H(s,E ‖us‖pα)ds.
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(H9) gives us

eatE ‖ut‖pα ≤ 3p−1NpE ‖ϕ‖pα + 3p−1Np(λ1 + λ2)

∫ t

0

H(s, easE ‖us‖pα)ds.

Then Lemma 3.3 yields that

eatE ‖ut‖pα < xm(t) for t ≥ 0.

For the main result of this section, we need the following further assumption:

(H10) There exist positive constants P,C∗, δ and a continuous function
κ : R+ → R+ satisfying κ(t) ≤ C∗e−δt for all t ≥ 0 such that the function H
in (H4) satisfies the condition

H(t, η) ≤ Pη + κ(t) for all η ∈ R+ and t ≥ 0. �

Moreover, we suppose that H(t, 0) = 0 for t ≥ 0.

Theorem 5.3. Assume that (H1)-(H7), (H9) and (H10) hold. Then the
trivial solution of Eq. (1.1) is exponentially stable in pth moment provided that

a > 3p−1PNp(λ1 + λ2).

Proof. Let xm be the global solution of Eq. (3.2) defined by

xm(t) = x0 + 3p−1Np(λ1 + λ2)

∫ t

0

H(s, xm(s))ds for t ≥ 0.

Then from (H10), we obtain that

xm(t) ≤ x0 + 3p−1Np(λ1 + λ2)

∫ t

0

[Pxm(s) + κ(s)]ds

≤ x0 +
C∗

δ
3p−1Np(λ1 + λ2) + 3p−1PNp(λ1 + λ2)

∫ t

0

xm(s)ds.
�

By Gronwall’s Lemma, we get that

(5.1) xm(t) ≤ x∗0eλ0t for t ≥ 0,

where

x∗0 = x0 +
C∗

δ
3p−1Np(λ1 + λ2) and λ0 = 3p−1PNp(λ1 + λ2).

Therefore, from (5.1) and Proposition 5.2, we have

E ‖ut‖pα < e−atxm(t) < e−atx∗0e
λ0t for t ≥ 0.

From (3.3), (3.5) and (H10), we have E ‖ϕ‖pα = 0⇒ E ‖ut‖pα = 0. Hence,

(5.2) E ‖ut‖pα ≤ QE ‖ϕ‖pα e
−λ1t for t ≥ 0,

where λ1 = a − λ0, Q is an arbitrary positive constant if E ‖ϕ‖pα = 0 and

Q =
x∗0

E‖ϕ‖pα
if E ‖ϕ‖pα 6= 0.
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6. Application

(6.1)



∂

∂t
v(t, ξ) =

( ∂2

∂ξ2
+ µ

)
v(t, ξ) +

∫ t

0

e−γ(t−s)
( ∂2

∂ξ2
+ µ

)
v(s, ξ)ds

+

∫ 0

−r
f(t,

∂

∂ξ
v(t+ θ, ξ))dθ + g(t,

∂

∂ξ
v(t− r, ξ))dw(t)

for t ≥ 0 and ξ ∈ [0, π],

v(t, 0) = v(t, π) = 0 for t ≥ 0,

v(θ, ξ) = v0(θ, ξ) for θ ∈ [−r, 0] and ξ ∈ [0, π],

where r, γ > 0, µ < 0, x0, f and g are continuous real values functions.
Set H = L2([0, π]) and w(t) :=

∑∞
n=1

√
λnβn(t)en, λn > 0, where βn(t) are

one dimensional standard Brownian motion mutually independent on a usual
complete probability space (Ω,F , {Ft}t≥0,P).

Consider the operator A : D(A) ⊆ H → H given by Au = u′′ + µu with
domain D(A) = H2(0, π) ∩H1

0 (0, π). The operator A has a discrete spectrum,
the eigenvalues are −n2 +µ and the corresponding normalized eigenvectors are
en(x) =

√
(2/π) sin(nx), n ∈ N∗. The set {en : n ∈ N∗} is an orthonormal

basis of H. A generates a strongly continuous semigroup
(
T (t)

)
t≥0

defined by:

T (t)u =

∞∑
n=1

e−(n2−µ)t 〈u, en〉 en for u ∈ H.

For α ∈ (0, 1), we define the fractional power (−A)α : D
(
(−A)α

)
⊆ H→ H by

(−A)αu =

∞∑
n=1

(n2 − µ)α〈u, en〉en

for each u ∈ D
(
(−A)α

)
=
{
x ∈ H :

∑∞
n=1(n2 − µ)α〈x, en〉en ∈ H

}
. Next, we

consider α = 1/2. Remark that ρ(A) ⊃ {λ ∈ C : Re(λ) ≥ µ} and ‖R(λ,A)‖ ≤
M1

|λ| for Re(λ) ≥ µ. Moreover, A is a sectorial operator and there exists M > 0

such that ‖R(λ,A)‖ ≤ M
|λ−µ| .

Let B(t) : D(A) ⊆ H → H be the operator defined by B(t)u = e−γtAu for
t ≥ 0 and u ∈ D(A).

Proposition 6.1 ([17, Theorem 5.1]). Under the above conditions, the hypoth-
esis (H1)-(H3) and (H7) are satisfied (with b(t) = e−γt and D = C∞0 ([0, π])
the space of infinitely differentiable functions with compact supports on [0, π]).

We suppose that:

(1) |f(t, ζ)|+ |g(t, ζ)| ≤ |ζ|;

(2) |f(t, ζ1)− f(t, ζ2)|+ |g(t, ζ1)− g(t, ζ2)| ≤ |ζ1 − ζ2|.
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We define

F (t, φ)(ξ) =

∫ 0

−r
f
(
t,
∂

∂ξ
φ(θ)(ξ)

)
dθ for ξ ∈ [0, π] and φ ∈ C1/2,

G(t, φ)(ξ) = g
(
t,
∂

∂ξ
φ(−r)(ξ)

)
for ξ ∈ [0, π] and φ ∈ C1/2.

If we put

u(t)(ξ) = v(t, ξ) for ξ ∈ [0, π] and t ≥ 0,

and

φ(θ)(ξ) = v0(θ, ξ) for ξ ∈ [0, π] and θ ∈ [−r, 0].

Then the system (6.1) takes the following form

(6.2)


d

dt
u(t) = Au(t) +

∫ t

0

B(t− s)u(s)ds+ F (t, ut)

+G(t, ut)dw(t) for t ≥ 0,

u0 = φ ∈ C1/2 = C
(
[−r, 0],Y1/2

)
.

Lemma 6.2. Let φ ∈ C1/2. Then ‖φ‖1/2 = ‖∇φ‖H.

Proof. See [15], Example 5.1. �

By Assumption 1 and Lemma 6.2, we have

‖F (t, φ1)‖p =

∫ π

0

∣∣∣∣∫ 0

−r
f
(
t,
∂

∂ξ
φ1(θ)(ξ)

)
dθ

∣∣∣∣p dξ
≤
∫ π

0

(∫ 0

−r
dθ
)∫ 0

−r

∣∣∣∣f(t, ∂∂ξ φ1(θ)(ξ)
)∣∣∣∣p dθdξ

≤
∫ π

0

r

∫ 0

−r
| ∂
∂ξ
φ1(θ)(ξ)|pdθdξ

≤ r2 ‖φ1‖p1/2 .

Likewise, we show that

‖G(t, φ)‖pL0
2
≤ ‖φ‖p1/2

and from Assumption 2, we obtain that

‖F (t, φ1)− F (t, φ2)‖pH ≤ r
2 ‖φ1 − φ2‖p1/2

and

‖G(t, φ1)−G(t, φ2)‖pL0
2
≤ ‖φ1 − φ2‖p1/2 .

Set H(t, x) = Z(t, x) = βx where β = 1
1+r2 . Hence, all the hypotheses of

Theorem 5.3 are satisfied. Then Eq. (6.2) has a unique mild solution which is
exponentially stable in pth moment.
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