A GRADED MINIMAL FREE RESOLUTION OF THE 2ND ORDER SYMBOLIC POWER OF THE IDEAL OF A STAR CONFIGURATION IN \mathbb{P}^{n}

Yong-Su Shin

Abstract

In [9], Geramita, Harbourne, and Migliore find a graded minimal free resolution of the 2 nd order symbolic power of the ideal of a linear star configuration in \mathbb{P}^{n} of any codimension r. In [8], Geramita, Galetto, Shin, and Van Tuyl extend the result on a general star configuration in \mathbb{P}^{n} but for codimension 2. In this paper, we find a graded minimal free resolution of the 2 nd order symbolic power of the ideal of a general star configuration in \mathbb{P}^{n} of any codimension r using a matroid configuration in [10]. This generalizes both the result on a linear star configuration in \mathbb{P}^{n} of codimension r in [9] and the result on a general star configuration in \mathbb{P}^{n} of codimension 2 in [8].

1. Introduction

In 2013, Geramita, Harbourne, and Migliore introduce a star configuration of codimension r in \mathbb{P}^{n}, which is a certain union of linear spaces V_{1}, \ldots, V_{k} each of codimension r (see [9]). We call this a linear star configuration of codimension r in \mathbb{P}^{n} in this article. The name is inspired by the fact that when $n=r=2$ and $s=5$, the placement of the five lines $\left\{L_{1}, \ldots, L_{5}\right\}$ that define a (linear) star configuration resembles a star. On the other hand, our more general definition of a star configuration in \mathbb{P}^{n} with $n \geq 2$ follows $[10,14]$, where the geometric objects are called hypersurface configurations. In particular, the codimension 2 case was studied before the general case (see [1]). Star configurations have been shown to have many nice algebraic and geometric properties (see $[10,14]$), but at the same time, can be used to exhibit extremal properties (see $[2,11]$). Moreover, star configurations have arisen as objects of study in numerous research projects lately (see $[3-7,11,13,15,16]$).

Let \mathbb{k} be an infinite field of any characteristic and let I be a homogeneous ideal of $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$. For a positive integer m, let $I^{(m)}$ be the m-th

[^0]symbolic power of I. Then $I^{m} \subseteq I^{(m)}$ in general. Since a general star configuration \mathbb{X} of codimension r in \mathbb{P}^{n} is a certain union of distinct hypersurface configurations V_{1}, \ldots, V_{k} with none containing any of the others, and each is a complete intersection, the m-th symbolic power of the ideal $I_{\mathbb{X}}$ of the star configuration is $I^{(m)}=I_{V_{1}}^{m} \cap \cdots \cap I_{V_{k}}^{m}$.

In [14, Theorem 3.4] the authors find a graded minimal free resolution of a general star configuration in \mathbb{P}^{n}, and show that any star configuration in \mathbb{P}^{n} is an arithmetically Cohen-Macaulay (see [9] for a linear star configuration in \mathbb{P}^{n}). In [9, Theorem 3.2], the authors find a graded minimal free resolution of the 2 nd order symbolic power of the ideal of a linear star configuration in \mathbb{P}^{n} of any codimension r. In [8, Theorem 5.3], the authors extend the result on a general star configuration in \mathbb{P}^{n} but for codimension 2.

Here, we find a graded minimal free resolution of the 2nd order symbolic power of the ideal of a general star configuration in \mathbb{P}^{n} of any codimension r using a matroid configuration in [10]. This generalizes both the result on a linear star configuration in \mathbb{P}^{n} of codimension r in [9, Theorem 3.2] and the result on a general star configuration in \mathbb{P}^{n} of codimension 2 in [8, Theorem 5.3].

Acknowledgement. We are grateful to the reviewer taking time to provide valuable comments and suggestions.

2. Preliminaries on star configurations in $\mathbb{P}^{\boldsymbol{n}}$ and a symbolic power of an ideal

We first introduce the notion of a star configuration in \mathbb{P}^{n}.
Definition 2.1. Let $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field \mathbb{k}. For positive integers r and s with $1 \leq r \leq \min \{n, s\}$, suppose F_{1}, \ldots, F_{s} are general forms in R of degrees d_{1}, \ldots, d_{s}, respectively. We call the variety \mathbb{X} defined by the ideal

$$
\bigcap_{1 \leq i_{1}<\cdots<i_{r} \leq s}\left(F_{i_{1}}, \ldots, F_{i_{r}}\right)
$$

a star configuration in \mathbb{P}^{n} of type (r, s). We sometimes call it a general star configuration in \mathbb{P}^{n} of codimension r.

Notice that each n-forms $F_{i_{1}}, \ldots, F_{i_{n}}$ of s-general forms F_{1}, \ldots, F_{s} in R defines $d_{i_{1}} \cdots d_{i_{n}}$ points in \mathbb{P}^{n} for each $1 \leq i_{1}<\cdots<i_{n} \leq s$. Thus the ideal

$$
\bigcap_{1 \leq i_{1}<\cdots<i_{n} \leq s}\left(F_{i_{1}}, \ldots, F_{i_{n}}\right)
$$

defines a finite set \mathbb{X} of points in \mathbb{P}^{n} with

$$
\operatorname{deg}(\mathbb{X})=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{n} \leq s} d_{i_{1}} d_{i_{2}} \cdots d_{i_{n}}
$$

Furthermore, if F_{1}, \ldots, F_{s} are general linear (quadratic, cubic, quartic, quintic, etc) forms in R, we call \mathbb{X} a linear (quadratic, cubic, quartic, quintic, etc) star configuration in \mathbb{P}^{n} of type (r, s), respectively.
Theorem 2.2 ([14, Theorem 2.3]). Let F_{1}, \ldots, F_{s} be general forms in $R=$ $\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ with $s \geq 2$ and $n \geq 2$. Then

$$
\bigcap_{1 \leq j_{1}<\cdots<j_{r} \leq s}\left(F_{j_{1}}, \ldots, F_{j_{r}}\right)=\sum_{1 \leq i_{1}<\cdots<i_{r-1} \leq s}\left(\frac{\prod_{\ell=1}^{s} F_{\ell}}{F_{i_{1}} \cdots F_{i_{r-1}}}\right)
$$

for $1 \leq r \leq \min \{n, s\}$.
Theorem 2.3 ([14, Theorem 3.4]). Let \mathbb{X} be a star configuration in \mathbb{P}^{n} of type (r, s) defined by general forms F_{1}, \ldots, F_{s} in $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ of degrees $d_{1}, d_{2}, \ldots, d_{s}$, where $2 \leq r \leq \min \{s, n\}$, and let $d=d_{1}+\cdots+d_{s}$. Then the minimal free resolution of $I_{\mathbb{X}}$ is

$$
\begin{equation*}
0 \rightarrow \mathbb{F}_{r}^{(r, s)} \rightarrow \mathbb{F}_{r-1}^{(r, s)} \rightarrow \cdots \rightarrow \mathbb{F}_{1}^{(r, s)} \rightarrow I_{\mathbb{X}} \rightarrow 0 \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathbb{F}_{r}^{(r, s)} & =R^{\alpha_{r}^{(r, s)}}(-d), \\
\mathbb{F}_{r-1}^{(r, s)} & =\bigoplus_{1 \leq i_{1} \leq s} R^{\alpha_{r-1}^{(r, s)}}\left(-\left(d-d_{i_{1}}\right)\right), \\
& \vdots \\
\mathbb{F}_{\ell}^{(r, s)} & =\bigoplus_{1 \leq i_{1}<\cdots<i_{r-\ell} \leq s} R^{\alpha_{\ell}^{(r, s)}}\left(-\left(d-\left(d_{i_{1}}+\cdots+d_{i_{r-\ell}}\right)\right)\right), \\
& \vdots \\
\mathbb{F}_{2}^{(r, s)} & =\bigoplus_{1 \leq i_{1}<\cdots<i_{r-2} \leq s} R^{\alpha_{2}^{(r, s)}}\left(-\left(d-\left(d_{i_{1}}+\cdots+d_{i_{r-2}}\right)\right)\right), \quad \text { and } \\
\mathbb{F}_{1}^{(r, s)} & =\bigoplus_{1 \leq i_{1}<\cdots<i_{r-1} \leq s} R^{\alpha_{1}^{(r, s)}}\left(-\left(d-\left(d_{i_{1}}+\cdots+d_{i_{r-1}}\right)\right)\right),
\end{aligned}
$$

with

$$
\alpha_{\ell}^{(r, s)}=\binom{s-r+\ell-1}{\ell-1} \quad \text { and } \quad \operatorname{rank} \mathbb{F}_{\ell}^{(r, s)}=\binom{s-r+\ell-1}{\ell-1} \cdot\binom{s}{r-\ell}
$$

for $1 \leq \ell \leq r$. In particular, the last free module $\mathbb{F}_{r}^{(r, s)}$ has only one shift d, i.e., a star configuration \mathbb{X} in \mathbb{P}^{n} is level. Furthermore, any star configuration \mathbb{X} in \mathbb{P}^{n} is arithmetically Cohen-Macaulay.

We now introduce the definition of symbolic power of an ideal with the notations in the introduction.

Definition 2.4. Let I be a homogeneous ideal of $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$. The m-th symbolic power of I, denoted $I^{(m)}$, is defined to be

$$
I^{(m)}=\bigcap_{P \in \operatorname{Ass}(I)}\left(I^{m} R_{P} \cap R\right),
$$

where $\operatorname{Ass}(I)$ denotes the set of associated primes of I and R_{P} is the ring R localized at the prime ideal P.

Note that $I^{m} \subseteq I^{(m)}$ in general, but the reverse containment may fail. However, it is well known that if I is a complete intersection ideal in R, then $I^{m}=I^{(m)}$ for $m \geq 1$ (see [17, Appendix 6, Lemma 5]).

3. A matroid configuration and the main theorem

In this section, we shall find the Betti numbers and the shifts of a graded minimal free resolution of the 2 nd order symbolic power of the ideal of a star configuration (not necessarily linear star configuration) in \mathbb{P}^{n} of type (r, s) defined by s-general forms in $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ with $1 \leq r \leq \min \{n, s\}$ and $n \geq 2$.

We first introduce some important results of the 2 nd order symbolic power of the ideal of a linear star configuration in \mathbb{P}^{n} in $[9,10]$.

Remark 3.1 ([10, Remark 2.11]). Let \mathbb{X} be a linear star configuration in \mathbb{P}^{n} of type (r, s) with $2 \leq r \leq \min \{n, s\}$. By [10, Proposition 2.9], the Artinian reduction of the homogeneous coordinate ring of \mathbb{X} is $\mathbb{k}\left[t_{1}, \ldots, t_{r}\right] / \boldsymbol{m}^{s-r+1}$, where $\boldsymbol{m}=\left(t_{1}, \ldots, t_{r}\right)$. Since \boldsymbol{m}^{s-r+1} is generated by the maximal minor of the $(s-r+1) \times s$ matrix

$$
\left[\begin{array}{cccccccc}
t_{1} & t_{2} & \cdots & t_{r} & 0 & \cdots & 0 & 0 \\
0 & t_{1} & t_{2} & \cdots & t_{r} & 0 & \cdots & 0 \\
& & & \vdots & & & & \\
0 & \cdots & 0 & t_{1} & t_{2} & t_{3} & \cdots & t_{r}
\end{array}\right],
$$

the graded Betti numbers of the homogeneous coordinate ring of \mathbb{X} are those given by Eagon-Northcott resolution of the maximal minors of a generic matrix of size $(s-r+1) \times s$ [12]. Denoting by $\mathbb{E}_{\bullet}^{(r, s)}$ a graded minimal free resolution of $I_{\mathbb{X}}$, we get that

$$
\operatorname{rk} \mathbb{E}_{\ell}^{(r, s)}=\binom{s}{s-r+\ell} \cdot\binom{s-r+\ell-1}{\ell-1}
$$

Theorem 3.2 ([9, Theorem 3.2]). With notation as above, let \mathbb{X} be a linear star configuration in \mathbb{P}^{n} of type (r, s). Then a graded minimal free resolution of $R / I_{\mathbb{X}}^{(2)}$ is

$$
0 \rightarrow \mathbb{F}_{r} \rightarrow \cdots \quad \rightarrow \quad \mathbb{F}_{1} \rightarrow R \rightarrow R / I_{\mathbb{X}}^{(2)} \rightarrow 0,
$$

where

$$
\mathbb{F}_{\ell}=\mathbb{E}_{\ell}^{(s, r)}(-(s-r+1)) \oplus \mathbb{E}_{\ell-1}^{(s, r-1)}(-(s-r+1)) \oplus \mathbb{E}_{\ell}^{(s, r-1)}
$$

for $\ell \geq 1$. More precisely,

$$
\mathbb{F}_{\ell}=R^{m_{\ell}}(-(2 s-2 r-\ell-1)) \oplus R^{n_{\ell}}(-(s-r-\ell-1)),
$$

where
$m_{\ell}= \begin{cases}\binom{s}{s-r+1}, & \text { if } \ell=1, \\ \binom{s}{s-r+\ell} \cdot\binom{s-r+\ell-1}{\ell-1}+\binom{s}{s-r+\ell} \cdot\binom{s-r+\ell-1}{\ell-2}, & \text { if } 2 \leq \ell \leq r,\end{cases}$
and

$$
n_{\ell}= \begin{cases}\binom{s}{s-r+\ell+1} \cdot\binom{s-r+\ell}{\ell-1}, & \text { if } 1 \leq \ell \leq r-1, \\ 0, & \text { if } \ell=r .\end{cases}
$$

We recall a few of concepts for simplicial complexes. Define $[s]=\{1,2, \ldots, s\}$. A matroid Δ on a vertax set $[s]$ is a nonempty collection of subsets of $[s]$ that is closed under inclusion and satisfies the following property. If A, B are in Δ and $|A|>|B|$, then there is some $i \in A$ such that $B \cup\{i\} \in \Delta$. We will consider Δ as a simplicial complex.

Let $S=\mathbb{k}\left[t_{1}, \ldots, t_{s}\right]$. For a subset $A \subseteq[s]$, we write t_{A} for the square free monomial $\prod_{i \in A} t_{i}$. The Stanley-Reisner ideal of Δ is $I_{\Delta}=\left\langle t_{A}\right| A \subseteq[s], A \notin$ $\Delta\rangle$ and the corresponding Stanley-Reisner ring is $\mathbb{k}[\Delta]=S / I_{\Delta}$.

Note that if we look at the minimal free S-resolution of S / I_{Δ}, then the entries in all the maps are monomials in the y_{i}. Moreover, replacing each y_{i} by F_{i} and each S by R give the minimal free resolution of $R / \varphi_{*}\left(I_{\Delta}\right)$. So the formula $\mathbb{F} \otimes_{S} R$ implies the following two meanings.
(a) The variable y_{i} in $S=\mathbb{k}\left[y_{1}, \ldots, y_{s}\right]$ moves to a form F_{i} in $R=$ $\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$, and
(b) an S free module \mathbb{F}_{ℓ} changes to an R free module $\mathbb{F}_{\ell} \otimes_{S} R$ for $\ell \geq 1$.

Theorem 3.3 ([10, Theorem 3.3]). Let Δ be a matroid on $[s]$ of dimension $s-$ $r-1$. Assume $f_{1}, \ldots, f_{s} \in R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ are homogeneous polynomials such that any subset of at most $r+1$ of them forms an R-regular sequence. Consider the ring homomorphism

$$
\varphi: S=\mathbb{k}\left[t_{1}, \ldots, t_{s}\right] \rightarrow R, t_{i} \mapsto f_{i} .
$$

Let I be an ideal of S. We write $\varphi_{*}(I)$ to denote the ideal in R generated by $\varphi(I)$. If $\mathbb{F}_{\mathbb{k}[\Delta]}$ is a graded minimal free resolution of $\mathbb{k}[\Delta]$ over S, then $\mathbb{F}_{\mathrm{k}[\Delta]} \otimes_{S} R$ is a graded minimal free resolution of $R / \varphi_{*}\left(I_{\Delta}\right)$ over R.

The ideal $\varphi_{*}\left(I_{\Delta}\right)$ is said to be obtained by specialization from the matroid ideal I_{Δ}. The subscheme of \mathbb{P}^{n} defined by $\varphi_{*}\left(I_{\Delta}\right)$ is called a matroid configuration [10].

Notice that a linear star configuration in \mathbb{P}^{n} is one of the matroid configuration, we shall use [10, Theorem 3.3] for the proof of this theorem. So we are now ready to find the Betti numbers and the shifts of a graded minimal free resolution of the 2 nd order symbolic power of the ideal of a star configuration in \mathbb{P}^{n}.

Theorem 3.4. Let \mathbb{X} be a star configuration in \mathbb{P}^{n} of type (r, s) defined by s-general forms F_{1}, \ldots, F_{s} in $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ of degrees d_{1}, \ldots, d_{s} with $2 \leq r \leq \min \{n, s\}$, and let $d=d_{1}+\cdots+d_{s}$. Then a graded minimal free resolution of $R / I_{\mathbb{X}}^{(2)}$ is

$$
0 \rightarrow \mathbb{G}_{r} \rightarrow \cdots \quad \rightarrow \mathbb{G}_{1} \rightarrow R \rightarrow R / I_{\mathbb{X}}^{(2)} \rightarrow 0
$$

where
$\mathbb{G}_{1}=\left[\bigoplus_{1 \leq i_{1}<\cdots<i_{r-1} \leq s} R\left(-2\left(d-\left(d_{i_{1}}+\cdots+d_{i_{r-1}}\right)\right)\right)\right]$

$$
\oplus\left[\bigoplus_{1 \leq i_{1}<\cdots<i_{r-2} \leq s} R\left(-\left(d-\left(d_{i_{1}}+\cdots+d_{i_{r-2}}\right)\right)\right)\right],
$$

$\mathbb{G}_{\ell}=\left[\bigoplus_{1 \leq i_{1}<\cdots<i_{r-\ell} \leq s}\left[\bigoplus_{k_{1}<\cdots<k_{\ell-1}} R\left(-\left(2\left(d-\left(d_{i_{1}}+\cdots+d_{i_{r-\ell}}\right)\right)\right)-\left(d_{k_{1}}+\cdots+d_{k_{\ell-1}}\right)\right)\right]\right]$

$$
\oplus\left[\underset{1 \leq i_{1}<\cdots<i_{(r-1)-\ell} \leq s}{ } R^{\binom{s-r+\ell}{\ell-1}}\left(-\left(d-\left(d_{i_{1}}+\cdots+d_{i_{(r-1)-\ell}}\right)\right)\right)\right],
$$

where $\left\{k_{1}, \ldots, k_{\ell-1}\right\}$ runs through $\binom{s-(r-\ell)}{\ell-1}$-times among $\left\{j_{1}, \ldots, j_{s-(r-\ell)}\right\}:=$ $\{1,2, \ldots, s\}-\left\{i_{1}, \ldots, i_{r-\ell}\right\}$, and

$$
\mathbb{G}_{r}=\bigoplus_{1 \leq i_{1}<\cdots<i_{r-1} \leq s} R\left(-\left(2 d-\left(d_{i_{1}}+\cdots+d_{i_{r-1}}\right)\right)\right) .
$$

Proof. Let $S=\mathbb{k}\left[t_{1}, \ldots, t_{s}\right]$. Consider the ideal of S

$$
I_{(r, s)}=\bigcap_{1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq s}\left\langle t_{i_{1}}, t_{i_{2}}, \ldots, t_{i_{r}}\right\rangle,
$$

generated by all products of $s-r+1$ distinct variables in $\left\{t_{1}, \ldots, t_{s}\right\}$ (see Theorem 2.2). It is the Stanley-Reisner ideal of a uniform matroid on $[s]$. Recall the map

$$
\begin{equation*}
\varphi: S=\mathbb{k}\left[y_{1}, \ldots, y_{s}\right] \rightarrow R, y_{i} \mapsto F_{i} . \tag{3.1}
\end{equation*}
$$

Then

$$
I_{\mathbb{X}}^{(2)}=\varphi_{*}\left(I_{(r, s)}\right)
$$

Notice that

$$
\begin{equation*}
I_{\mathbb{X}}=\sum_{1 \leq i_{1}<\cdots<i_{r-1} \leq s}\left(\frac{\prod_{\ell=1}^{s} F_{\ell}}{F_{i_{1}} \cdots F_{i_{r-1}}}\right) \tag{3.2}
\end{equation*}
$$

and the ℓ-th free module of a graded minimal free resolution of the ideal $I_{(r, s)}^{(2)}$ ([10, Theorem 3.2]) is

$$
\mathbb{F}_{\ell}=R^{m_{\ell}}(-(2 s-2 r+\ell+1)) \oplus R^{n_{\ell}}(-(s-r+\ell+1)),
$$

where
$m_{\ell}= \begin{cases}\binom{s}{s-r+1}, & \text { if } \ell=1, \\ \binom{s}{s-r+\ell} \cdot\binom{s-r+\ell-1}{\ell-1}+\binom{s}{s-r+\ell} \cdot\binom{s-r+\ell-1}{\ell-2}, & \text { if } 2 \leq \ell \leq r,\end{cases}$
and

$$
n_{\ell}= \begin{cases}\binom{s}{s-r+\ell+1} \cdot\binom{s-r+\ell}{\ell-1}, & \text { if } 1 \leq \ell \leq r-1, \\ 0, & \text { if } \ell=r\end{cases}
$$

By Theorem 3.3, the ℓ-th free module of a graded minimal free resolution of the ideal $R / I_{\mathbb{X}}^{(2)}$ is

$$
\mathbb{F}_{\ell} \otimes_{S} R
$$

Recall that the maps appeared in the minimal free resolution of S / I_{Δ} are obtained from Eagon-Northcott resolution and the mapping cone construction from Basic Double G-Linkage ([9, Proposition 2.6]). As we mentioned before, the entries in all the maps in the minimal free resolution of S / I_{Δ} are monomials in the y_{i}, and replacing each y_{i} by F_{i} and each S by R gives the minimal free resolution of $R / \varphi_{*}\left(I_{\Delta}\right)$. Hence one can conclude that

$$
s \stackrel{\varphi_{*}^{*}}{\mapsto} d, \quad \text { and } \quad 1 \stackrel{\varphi_{*}^{*}}{\mapsto} d_{i} .
$$

- Let $\ell=1$. By equation (3.2) and Remark 3.1, we have

$$
\begin{aligned}
\mathbb{E}_{1}^{r, s}(-(s-r+1)) \otimes_{S} R & =\left[S^{\left({ }_{r-1}^{s}\right)}(-(s-(r-1)))\right](-(s-(r-1))) \otimes_{S} R \\
& =S^{\left({ }_{r-1}^{s}\right)}(-2(s-(r-1))) \otimes_{S} R \\
& =\bigoplus_{1 \leq i_{1}<\cdots<i_{r-1} \leq s} S(-2(s-(r-1))) \otimes_{S} R \\
& =\bigoplus_{1 \leq i_{1}<\cdots<i_{r-1} \leq s} R\left(-2\left(d-\left(d_{i_{1}}+\cdots+d_{i_{r-1}}\right)\right)\right), \text { and } \\
\mathbb{E}_{1}^{r-1, s} \otimes_{S} R & =\left[S^{\binom{s}{r-2}}(-(s-(r-2)))\right] \otimes_{S} R \\
& =S^{\left({ }_{r-2}^{s}\right)}(-(s-(r-2))) \otimes_{S} R \\
& =\bigoplus_{1 \leq i_{1}<\cdots<i_{r-2} \leq s} S(-2(s-(r-2))) \otimes_{S} R \\
& =\bigoplus_{1 \leq i_{1}<\cdots<i_{r-2} \leq s} R\left(-\left(d-\left(d_{1}+\cdots+d_{i_{r-2}}\right)\right)\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\mathbb{G}_{1}= & \mathbb{F}_{1} \otimes_{S} R \\
= & \mathbb{E}_{1}^{r, s}(-(s-(r-1))) \otimes_{S} R \oplus \mathbb{E}_{1}^{r-1, s} \otimes_{S} R \\
= & {\left[\bigoplus_{1 \leq i_{1}<\cdots<i_{r-1} \leq s} R\left(-2\left(d-\left(d_{i_{1}}+\cdots+d_{i_{r-1}}\right)\right)\right)\right] } \\
& \oplus\left[\bigoplus_{1 \leq i_{1}<\cdots<i_{r-2} \leq s} R\left(-\left(d-\left(d_{i_{1}}+\cdots+d_{i_{r-2}}\right)\right)\right)\right] .
\end{aligned}
$$

- Let $1<\ell<r$. Recall that

$$
\begin{aligned}
\mathrm{rkE}_{\ell}^{(r, s)} & =\binom{s}{s-(r-\ell)} \cdot\binom{s-r+\ell-1}{\ell-1}, \\
\operatorname{rk} \mathbb{E}_{\ell-1}^{(r-1, s)} & =\binom{s}{s-(r-\ell)} \cdot\binom{s-r+\ell-1}{\ell-2}, \quad \text { and thus } \\
\mathrm{rkE}_{\ell}^{(r, s)}+\mathrm{rkE} \mathbb{E}_{\ell-1}^{(r-1, s)} & =\binom{s}{s-(r-\ell)} \cdot\binom{s-(r-\ell)}{\ell-1} .
\end{aligned}
$$

So

$$
\mathbb{E}_{\ell}^{(r, s)}+\mathbb{E}_{\ell-1}^{(r-1, s)}=S^{\left(\begin{array}{c}
s-(r-\ell)
\end{array}\right) \cdot\binom{s-(r-\ell)}{\ell-1}}(s-(r-\ell)) .
$$

Now consider the case $\left\{d_{i_{1}}, \ldots, d_{i_{r-\ell}}\right\}$ of degrees among $\left\{d_{1}, \ldots, d_{s}\right\}$. Then the complement case of the case $\left\{d_{i_{1}}, \ldots, d_{i_{r-\ell}}\right\}$ among $\left\{d_{1}, \ldots, d_{s}\right\}$ is $\left\{d_{1}, \ldots, d_{s}\right\}-$ $\left\{d_{i_{1}}, \ldots, d_{i_{r-\ell}}\right\}$. So there is a one to one correspondence between two cases as

$$
\left\{d_{i_{1}}, \ldots, d_{i_{r-\ell}}\right\} \leftrightarrow\left\{d_{1}, \ldots, d_{s}\right\}-\left\{d_{i_{1}}, \ldots, d_{i_{r-\ell}}\right\}:=\left\{d_{j_{1}}, \ldots, d_{j_{s-(r-\ell)}}\right\} .
$$

Recall the map

$$
\varphi: S=\mathbb{k}\left[y_{1}, \ldots, y_{s}\right] \rightarrow R, \quad y_{i} \mapsto F_{i}, \quad \text { for every } \quad i=1, \ldots, s
$$

Hence the shift $(s-(r-\ell))$ in the ℓ-th free module \mathbb{F}_{ℓ} of a graded minimal free resolution of $S / I_{(r, s)}$ changes to the shift $\left(d-\left(d_{i_{1}}+\cdots+d_{i_{r-\ell}}\right)\right)=\left(d_{j_{1}}+\cdots+\right.$ $\left.d_{d_{s-(r-\ell)}}\right)$ in the ℓ-th free module of a graded minimal free resolution of $R / I_{\mathbb{X}}^{(2)}$. In other words, there is a one to one correspondence between two shifts as

$$
\begin{aligned}
&(s-(r-\ell)) \stackrel{\varphi_{*}}{\mapsto}\left(d-\left(d_{i_{1}}+\cdots+d_{i_{r-\ell}}\right)\right) \\
&=\left(d_{j_{1}}+\cdots+d_{\left.d_{j_{s-(r-\ell)}}\right), \text { and so }}\right. \\
& S^{\left({ }_{s-(r-\ell)}^{s}\right)}(-(s-(r-\ell))) \stackrel{\varphi_{*}}{\mapsto} \quad S^{(s-(r-\ell)}(-(s-(r-\ell))) \otimes_{S} R \\
&= \sum_{1 \leq i_{1}<\cdots<i_{r-\ell} \leq s} R\left(-\left(d-\left(d_{i_{1}}+\cdots+d_{i_{r-\ell}}\right)\right)\right) \\
&=\left.\sum_{1 \leq j_{1}<\cdots<j_{s-(r-\ell)} \leq s} R\left(-\left(d_{j_{1}}+\cdots+d_{j_{s-(r-\ell)}}\right)\right)\right) .
\end{aligned}
$$

Note that

$$
(s-r+1)=(s-(r-\ell))-(\ell-1),
$$

and thus

$$
\begin{aligned}
(s-(r-\ell))+(s-r+1) & =(s-(r-\ell))+((s-(r-\ell))-(\ell-1)) \\
& =2(s-(r-\ell))-(\ell-1) .
\end{aligned}
$$

This implies that each $\binom{s-(r-\ell)}{\ell-1}$-times shift $(s-(r-\ell))$ of the ℓ-th free module \mathbb{F}_{ℓ} of a graded minimal free resolution of $S / I_{(r, s)}^{(2)}$ changes to the shifts of the ℓ-th free module \mathbb{G}_{ℓ} of a graded minimal free resolution of $R / I_{\mathbb{X}}^{(2)}$ as

$$
\begin{aligned}
&(s-(r-\ell))+(s-r+1)=(s-(r-\ell))+((s-(r-\ell))-(\ell-1)) \\
&= 2(s-(r-\ell))-(\ell-1) \\
& \stackrel{\varphi_{*}}{\mapsto} \quad 2\left(d-\left(d_{i_{1}}+\cdots+d_{i_{r-\ell}}\right)\right)-\left(d_{k_{1}}+\cdots+d_{k_{\ell-1}}\right) \\
&=2\left(d_{j_{1}}+\cdots+d_{j_{s-(r-\ell)}}\right)-\left(d_{k_{1}}+\cdots+d_{k_{\ell-1}}\right),
\end{aligned}
$$

where $\left\{k_{1}, \ldots, k_{\ell-1}\right\}$ runs through $\binom{s-(r-\ell)}{\ell-1}$-times among

$$
\left\{j_{1}, \ldots, j_{s-(r-\ell)}\right\}:=\{1,2, \ldots, s\}-\left\{i_{1}, \ldots, i_{r-\ell}\right\} .
$$

So, with notations as above

$$
\begin{align*}
& {\left[S^{\binom{s-(r-\ell)}{s}\binom{s-(r-\ell}{\ell-1}}(s-(r-\ell))\right](-(s-r+1)) } \tag{3.3}\\
&= S^{(s-(r-\ell)}\left(\begin{array}{c}
s \\
s-(r-\ell) \\
\ell-1
\end{array}\right) \\
&\left.{ }_{\ell}-(2(s-(r-\ell))-(\ell-1))\right) \\
& \varphi_{*} \bigoplus_{1<i_{1}<\cdots<i_{r-\ell} \leq s}\left[\bigoplus_{k_{1}<\cdots<k_{\ell-1}} R\left(-\left(2\left(d-\left(d_{i_{1}}+\cdots+d_{i_{r-\ell}}\right)\right)-\left(d_{k_{1}}+\cdots+d_{k_{\ell-1}}\right)\right)\right)\right] .
\end{align*}
$$

Thus,

$$
\begin{aligned}
& {\left[\mathbb{E}_{\ell}^{(r, s)}+\mathbb{E}_{\ell-1}^{(r-1, s)}\right](-(s-r+1)) \otimes_{S} R } \\
&= {\left[S^{(s-(r-\ell)}\right) \cdot\binom{s-(r-\ell)}{\ell-1} } \\
&=\left.\bigoplus_{1 \leq i_{1}<\cdots<i_{r-\ell} \leq s}[-(s-(r-\ell)))\right](-(s-r+1)) \otimes_{S} R \\
&\left.\bigoplus_{k_{1}<\cdots<k_{\ell-1}} R\left(-\left(2\left(d-\left(d_{i_{1}}+\cdots+d_{r-\ell}\right)\right)-\left(d_{k_{1}}+\cdots+d_{k_{\ell-1}}\right)\right)\right)\right] .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \mathbb{E}_{\ell}^{(r-1, s)} \otimes_{S} R \\
= & {\left[S^{((r-1)-\ell) \cdot\left(s_{-(r-1)+\ell-1}^{\ell-1}\right)}(-(s-((r-1)-\ell)))\right] \otimes_{S} R } \\
= & {\left[\bigoplus_{1 \leq i_{1}<\cdots<i_{(r-1)-\ell} \leq s} S^{(s-(r-1)+\ell-1} \ell-1\right.} \\
= & \left.\bigoplus_{1 \leq i_{1}<\cdots<i_{(r-1)-\ell} \leq s} R^{(s-r-1} \ell\right)\left(-\left(d-\left(d_{1}+\cdots+d_{(r-1)-\ell)}\right)\right) .\right.
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mathbb{G}_{\ell}= & \mathbb{F}_{\ell} \otimes_{S} R \\
= & {\left[\left[\mathbb{E}_{\ell}^{(r, s)}(-(s-(r-1))) \otimes_{S} R\right] \oplus\left[\mathbb{E}_{\ell-1}^{(r-1, s)}(-(s-(r-1))) \otimes_{S} R\right]\right] } \\
& \oplus\left[\mathbb{E}_{\ell}^{(r-1, s)} \otimes_{S} R\right] \\
= & {\left[\bigoplus_{1 \leq i_{1}<\cdots<i_{r-\ell} \leq s}\left[\bigoplus_{k_{1}<\cdots<k_{\ell-1}} R\left(-\left(2\left(d-\left(d_{i_{1}}+\cdots+d_{r-\ell}\right)\right)-\left(d_{k_{1}}+\cdots+d_{k_{\ell-1}}\right)\right)\right)\right]\right] } \\
& \oplus\left[\bigoplus_{1 \leq i_{1}<\cdots<i_{(r-1)-\ell} \leq s} R^{\binom{s-r+\ell}{\ell-1}}\left(-\left(d-\left(d_{1}+\cdots+d_{(r-1)-\ell}\right)\right)\right)\right]
\end{aligned}
$$

where $\left\{k_{1}, \ldots, k_{\ell-1}\right\}$ runs through $\binom{s-(r-\ell)}{\ell-1}$-times among

$$
\left\{j_{1}, \ldots, j_{s-(r-\ell)}\right\}:=\{1,2, \ldots, s\}-\left\{i_{1}, \ldots, i_{r-\ell}\right\}
$$

- Let $\ell=r$. Then

$$
\begin{aligned}
& \mathbb{E}_{r}^{(r, s)}(-(s-(r-1))) \otimes_{S} R \\
&= {\left[S^{(s-1} \begin{array}{rl}
s-1
\end{array}\right) } \\
&= {\left.\left[S^{(s-1}\right)\right](-(s-(r-1))) \otimes_{S} R } \\
&\left.\mathbb{E}_{r-1}^{(r-1, s)}(-(2 s-(r-1)))\right] \otimes_{S} R, \text { and } \\
&= {\left[S^{(s-1)}(-(r-1))\right) \otimes_{S} R } \\
&= {\left[S^{(s-1)}(-s)\right](-(s-(r-1))) \otimes_{S} R } \\
& r-2
\end{aligned}(-(2 s-(r-1))) \otimes_{S} R . \quad .
$$

Thus

$$
\begin{aligned}
\mathbb{G}_{r} & =\mathbb{F}_{r} \otimes_{S} R \\
& =\mathbb{E}_{r}^{(r, s)}(-(s-(r-1))) \otimes_{S} R \oplus \mathbb{E}_{r-1}^{(r-1, s)}(-(s-(r-1))) \otimes_{S} R \\
& \left.=\left[S^{\binom{s-1}{r-1}}(-(2 s-(r-1))) \otimes_{S} R\right] \oplus\left[S^{(s-1} \begin{array}{l}
s-2
\end{array}\right)(-(2 s-(r-1))) \otimes_{S} R\right] \\
& =S^{\binom{s}{r-1}}(-(2 s-(r-1))) \otimes_{S} R \\
& =\bigoplus_{1 \leq i_{1}<\cdots<i_{r-1} \leq s} S(-(2 s-(r-1))) \otimes_{S} R \\
& =\bigoplus_{1 \leq i_{1}<\cdots<i_{r-1} \leq s} R\left(-\left(2 d-\left(d_{i_{1}}+\cdots+d_{i_{r-1}}\right)\right)\right),
\end{aligned}
$$

as we wished.
This completes the proof.

Example 3.5. Consider a star configuration \mathbb{X} in \mathbb{P}^{n} of type (3,4) defined by general forms in $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ of degrees $2,3,5$, and 8 with $n \geq 3$. We now calculate the graded Betti numbers and the shifts of a graded minimal free resolution of $R / I_{\mathbb{X}}^{(2)}$. Let

$$
d_{1}=2, d_{2}=3, d_{3}=5, d_{4}=8, \quad \text { and } \quad d=d_{1}+d_{2}+d_{3}+d_{4}=18
$$

and let

$$
0 \rightarrow \mathbb{G}_{3} \rightarrow \mathbb{G}_{2} \rightarrow \mathbb{G}_{1} \rightarrow R \rightarrow R / I_{\mathbb{X}}^{(2)} \rightarrow 0
$$

be a graded minimal free resolution of $R / I_{\mathbb{X}}^{(2)}$.

- First we calculate the graded Betti numbers and the shifts of the first free module \mathbb{G}_{1}. Recall that, by Theorem 3.4,

$$
\mathbb{G}_{1}=\left[\bigoplus_{1 \leq i_{1}<i_{2} \leq 4} R\left(-2\left(d-\left(d_{i_{1}}+d_{i_{2}}\right)\right)\right)\right] \oplus\left[\bigoplus_{1 \leq i \leq s} R\left(-\left(d-d_{i}\right)\right)\right]
$$

and so we get the shifts of \mathbb{G}_{1} as follows.

$$
\begin{array}{|c|c|}
\hline 2\left(d-\left(d_{i_{1}}+d_{i_{2}}\right)\right) & \\
\hline \hline 2\left(d-\left(d_{3}+d_{4}\right)\right) & 10 \\
\hline 2\left(d-\left(d_{2}+d_{4}\right)\right) & 14 \\
\hline 2\left(d-\left(d_{2}+d_{3}\right)\right) & 20 \\
\hline 2\left(d-\left(d_{1}+d_{4}\right)\right) & 16 \\
\hline 2\left(d-\left(d_{1}+d_{3}\right)\right) & 22 \\
\hline 2\left(d-\left(d_{1}+d_{2}\right)\right) & 26 \\
\hline
\end{array} \quad \begin{array}{|c|c|}
\hline\left(d-d_{i}\right) & \\
\hline \hline d-d_{1} & 16 \\
\hline d-d_{2} & 15 \\
\hline d-d_{3} & 13 \\
\hline d-d_{4} & 10 \\
\hline
\end{array}
$$

Thus

$$
\begin{aligned}
\mathbb{G}_{1}= & R(-10)^{2} \oplus R(-13) \oplus R(-14) \oplus R(-15) \oplus R^{2}(-16) \\
& \oplus R(-20) \oplus R(-22) \oplus R(-26) .
\end{aligned}
$$

- Let $\ell=2$. By Theorem 3.4,

$$
\mathbb{G}_{2}=\left[\bigoplus_{1 \leq i \leq 4}\left[\bigoplus_{j \neq i} R\left(-\left(2\left(d-d_{i}\right)-d_{j}\right)\right)\right]\right] \oplus R^{3}(-d) .
$$

So we have the following shifts in \mathbb{G}_{2} as

$2\left(d-d_{i}\right)$		$j \neq i$	$2\left(d-d_{i}\right)-d_{j}$			
$2\left(d-d_{4}\right)$	20	d_{1}, d_{2}, d_{3}	$18,17,15$			
$2\left(d-d_{3}\right)$	26	d_{1}, d_{2}, d_{4}	$24,23,18$			
$2\left(d-d_{2}\right)$	30	d_{1}, d_{3}, d_{4}	$28,25,22$			
$2\left(d-d_{1}\right)$	32	d_{2}, d_{3}, d_{4}	$29,27,24$	and	d, d, d	$18,18,18$
:---	:---	:---	.			

Hence we get that

$$
\begin{aligned}
\mathbb{G}_{2}= & R(-15) \oplus R(-17) \oplus R(-18)^{5} \oplus R(-22) \oplus R(-23) \oplus R(-24)^{2} \\
& \oplus R(-25) \oplus R(-27) \oplus R(-28) \oplus R(-29) .
\end{aligned}
$$

- Let $\ell=r=3$. By Theorem 3.4,

$$
\mathbb{G}_{3}=\bigoplus_{1 \leq i_{1}<i_{2} \leq 4} R\left(-\left(2 d-\left(d_{i_{1}}+d_{i_{2}}\right)\right)\right) .
$$

So we have the following shifts in \mathbb{G}_{3} as:

$2 d-\left(d_{i_{1}}+d_{i_{2}}\right)$	
$2 d-\left(d_{1}+d_{2}\right)$	31
$2 d-\left(d_{1}+d_{3}\right)$	29
$2 d-\left(d_{1}+d_{4}\right)$	26
$2 d-\left(d_{2}+d_{3}\right)$	28
$2 d-\left(d_{2}+d_{4}\right)$	25
$2 d-\left(d_{3}+d_{4}\right)$	23

Hence we have

$$
\mathbb{G}_{3}=R(-23) \oplus R(-25) \oplus R(-26) \oplus R(-28) \oplus R(-29) \oplus R(-31) .
$$

Therefore a graded minimal free resolution of $R / I_{\mathbb{X}}^{(2)}$ is

$$
\begin{aligned}
0 \rightarrow & R(-23) \oplus R(-25) \oplus R(-26) \oplus R(-28) \oplus R(-29) \oplus R(-31) \\
\rightarrow & {\left[R(-15) \oplus R(-17) \oplus R(-18)^{5} \oplus R(-22) \oplus R(-23) \oplus R(-24)^{2}\right.} \\
& \oplus R(-25) \oplus R(-27) \oplus R(-28) \oplus R(-29)] \\
\rightarrow & R(-10)^{2} \oplus R(-13) \oplus R(-14) \oplus R(-15) \oplus R^{2}(-16) \oplus R(-20) \\
& \oplus R(-22) \oplus R(-26) \\
\rightarrow & R \rightarrow R / I_{\mathbb{X}}^{(2)} \rightarrow 0 .
\end{aligned}
$$

As a special case of Theorem 3.4 with codimension 2, i.e., $r=2$, the following corollary is immediate.
Corollary 3.6 ([8, Theorem 5.3]). Let \mathbb{X} be a star configuration in \mathbb{P}^{n} of type $(2, s)$ defined by s-general forms in $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ of degrees d_{1}, \ldots, d_{s} with $s \geq 2$, and let $d=d_{1}+\cdots+d_{s}$. Then a graded minimal free resolution of $R / I_{\mathbb{X}}^{(2)}$ is
$0 \rightarrow \bigoplus_{1 \leq i \leq s} R\left(-\left(2 d-d_{i}\right)\right) \rightarrow R(-d) \oplus\left[\bigoplus_{1 \leq i \leq s} R\left(-\left(2\left(d-d_{i}\right)\right)\right)\right] \rightarrow R \rightarrow R / I_{\mathbb{X}}^{(2)} \rightarrow 0$.

References

[1] J. Ahn and Y. S. Shin, The minimal free resolution of a star-configuration in \mathbb{P}^{n} and the weak Lefschetz property, J. Korean Math. Soc. 49 (2012), no. 2, 405-417.
[2] C. Bocci and B. Harbourne, Comparing powers and symbolic powers of ideals, J. Algebraic Geom. 19 (2010), no. 3, 399-417.
[3] , The resurgence of ideals of points and the containment problem, Proc. Amer. Math. Soc. 138 (2010), no. 4, 1175-1190.
[4] E. Carlini, L. Chiantini, and A. V. Geramita, Complete intersections on general hypersurfaces, Michigan Math. J. 57 (2008), 121-136.
[5] E. Carlini, E. Guardo, and A. Van Tuyl, Star configurations on generic hypersurfaces, J. Algebra 407 (2014), 1-20.
[6] E. Carlini and A. Van Tuyl, Star configuration points and generic plane curves, Proc. Amer. Math. Soc. 139 (2011), no. 12, 4181-4192.
[7] S. Cooper, B. Harbourne, and Z. Teitler, Combinatorial bounds on Hilbert functions of fat points in projective space, J. Pure Appl. Algebra 215 (2011), no. 9, 2165-2179.
[8] F. Galetto, Anthony V. Geramita, Y. S. Shin, and A. Van Tuyl, The Symbolic Defect of an Ideal, In preparation.
[9] A. V. Geramita, B. Harbourne, and J. Migliore, Star configurations in \mathbb{P}^{n}, J. Algebra 376 (2013), 279-299.
[10] A. V. Geramita, B. Harbourne, J. C. Migliore, and U. Nagel, Matroid configurations and symbolic powers of their ideals, In preparation.
[11] A. V. Geramita, J. Migliore, and L. Sabourin, On the first infinitesimal neighborhood of a linear configuration of points in \mathbb{P}^{2}, J. Algebra 298 (2006), no. 2, 563-611.
[12] M. Hochster and J. A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020-1058.
[13] Y. R. Kim and Y. S. Shin, Star-configurations in \mathbb{P}^{n} and the weak-Lefschetz property, Comm. Algebra 44 (2016), no. 9, 3853-3873.
[14] J. P. Park and Y. S. Shin, The minimal free graded resolution of a star-configuration in \mathbb{P}^{n}, J. Pure Appl. Algebra 219 (2015), no. 6, 2124-2133.
[15] Y. S. Shin, Secants to the variety of completely reducible forms and the Hilbert function of the union of star-configurations, J. Algebra Appl. 11 (2012), no. 6, 1250109, 27 pp.
[16] , Star-configurations in \mathbb{P}^{2} having generic Hilbert function and the weak Lefschetz property, Comm. Algebra 40 (2012), no. 6, 2226-2242.
[17] O. Zariski and P. Samuel, Commutative Algebra. Vol. II, reprint of the 1960 edition, Springer-Verlag, New York, 1975.

Yong-Su Shin
Department of Mathematics
Sungshin Women's University
Seoul 02844, Korea
Email address: ysshin@sungshin.ac.kr

[^0]: Received February 18, 2018; Revised July 15, 2018; Accepted September 28, 2018.
 2010 Mathematics Subject Classification. 13A17, 14M05.
 Key words and phrases. a graded minimal free resolution, symbolic powers, regular powers, star configurations.

 This research was supported by a grant from Sungshin Women's University.

