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A GRADED MINIMAL FREE RESOLUTION OF THE 2ND
ORDER SYMBOLIC POWER OF THE IDEAL OF A STAR
CONFIGURATION IN P™

YONG-SU SHIN

ABSTRACT. In [9], Geramita, Harbourne, and Migliore find a graded min-
imal free resolution of the 2nd order symbolic power of the ideal of a linear
star configuration in P™ of any codimension r. In [8], Geramita, Galetto,
Shin, and Van Tuyl extend the result on a general star configuration in
P™ but for codimension 2. In this paper, we find a graded minimal free
resolution of the 2nd order symbolic power of the ideal of a general star
configuration in P" of any codimension r using a matroid configuration
in [10]. This generalizes both the result on a linear star configuration in
P" of codimension 7 in [9] and the result on a general star configuration
in P™ of codimension 2 in [8].

1. Introduction

In 2013, Geramita, Harbourne, and Migliore introduce a star configuration
of codimension r in P™, which is a certain union of linear spaces Vi,...,Vj
each of codimension r (see [9]). We call this a linear star configuration of
codimension r in P™ in this article. The name is inspired by the fact that
when n = r = 2 and s = 5, the placement of the five lines {Lq,..., L5}
that define a (linear) star configuration resembles a star. On the other hand,
our more general definition of a star configuration in P" with n > 2 follows
[10,14], where the geometric objects are called hypersurface configurations. In
particular, the codimension 2 case was studied before the general case (see [1]).
Star configurations have been shown to have many nice algebraic and geometric
properties (see [10,14]), but at the same time, can be used to exhibit extremal
properties (see [2,11]). Moreover, star configurations have arisen as objects of
study in numerous research projects lately (see [3-7,11,13,15,16)).

Let k be an infinite field of any characteristic and let I be a homogeneous
ideal of R = k[zg,x1,...,2,]. For a positive integer m, let I(™ be the m-th
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symbolic power of I. Then I"™ C I™) in general. Since a general star con-
figuration X of codimension r in P" is a certain union of distinct hypersurface
configurations V7, ...,V with none containing any of the others, and each is
a complete intersection, the m-th symbolic power of the ideal Ix of the star
configuration is 1™ = Iyn---niy.

In [14, Theorem 3.4] the authors find a graded minimal free resolution of a
general star configuration in P”, and show that any star configuration in P"
is an arithmetically Cohen-Macaulay (see [9] for a linear star configuration in
P™). In [9, Theorem 3.2], the authors find a graded minimal free resolution of
the 2nd order symbolic power of the ideal of a linear star configuration in P™
of any codimension r. In [8, Theorem 5.3], the authors extend the result on a
general star configuration in P™ but for codimension 2.

Here, we find a graded minimal free resolution of the 2nd order symbolic
power of the ideal of a general star configuration in P" of any codimension r
using a matroid configuration in [10]. This generalizes both the result on a
linear star configuration in P™ of codimension r in [9, Theorem 3.2] and the
result on a general star configuration in P™ of codimension 2 in [8, Theorem
5.3].

Acknowledgement. We are grateful to the reviewer taking time to provide
valuable comments and suggestions.

2. Preliminaries on star configurations in P™ and a symbolic power
of an ideal

We first introduce the notion of a star configuration in P".

Definition 2.1. Let R = k|[xg, z1,...,Z,] be a polynomial ring over a field k.
For positive integers r and s with 1 < r < min{n, s}, suppose Fi, ..., Fy are
general forms in R of degrees dq,...,ds, respectively. We call the variety X
defined by the ideal

N F.....F)
1<y <+ <ip<s
a star configuration in P™ of type (r,s). We sometimes call it a general star

configuration in P™ of codimension 7.

Notice that each n-forms Fj ,...,F; of s-general forms Fj,...,Fs in R
defines d;, - - - d;, points in P" for each 1 <4; < --- <4, <s. Thus the ideal

N (Fy.....F,)
1<iy < <in<s
defines a finite set X of points in P with

deg(X) = > diydiy - d; .

1<i1 <ip <+ <in <s
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Furthermore, if FY, ..., Fs are general linear (quadratic, cubic, quartic, quin-
tic, etc) forms in R, we call X a linear (quadratic, cubic, quartic, quintic, etc)
star configuration in P™ of type (r,s), respectively.

Theorem 2.2 ([14, Theorem 2.3]). Let F,...,Fs be general forms in R =

k[zo,z1,...,2,] with s > 2 and n > 2. Then
I, Fe
N EnB)= ) (“F
1<j1 < <jr<s 1<ig <o <ip 1 <s N 0 et

for 1 <r < min{n, s}.

Theorem 2.3 ([14, Theorem 3.4]). Let X be a star configuration in P™ of type
(r,s) defined by general forms Fy,...,Fs in R = K[zg,21,...,2,] of degrees
dy,da,...,ds, where 2 < r < min{s,n}, and let d = dy + --- + ds. Then the
minimal free resolution of Ix is

(2.1) 0= F"Y) 5 FY o 5 FY I 0,
where

F) = R (—d),

s a(T"S)
Fg_’l) = @ R (=(d — d,)),
l§i1§5
7,5 oz(r’s)
FE ) = @ R%e (_(d_(dzl +"'+dir7£)))7

1<i1 < <ip_¢<s

r,s a(T'S)

FyY = P R (—(d—(dy ++d;,y)), and
1<iy < <ip_2<s

.8 (X(T'S)

F) = (&) R (—(d— (diy + -+ +di,_))),

1<iy < <ip_1<s

with

(risy _ [(s—r+L—1 (risy _ [(s—r+L—1 _ s
a, —< 0—1 and rankF,"™ = 0—1 .y

for 1 < 0 < r. In particular, the last free module Fg’s) has only one shift d,
i.e., a star configuration X in P™ is level. Furthermore, any star configuration
X in P™ is arithmetically Cohen-Macaulay.

We now introduce the definition of symbolic power of an ideal with the
notations in the introduction.
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Definition 2.4. Let I be a homogeneous ideal of R = k[zg, z1,...,2,]. The
m-th symbolic power of I, denoted I(™ | is defined to be

Im = ﬂ (I™Rp N R),
PeAss(I)

where Ass(I) denotes the set of associated primes of I and Rp is the ring R
localized at the prime ideal P.

Note that I"™ C I(™) in general, but the reverse containment may fail.
However, it is well known that if I is a complete intersection ideal in R, then
I™ = 1™ for m > 1 (see [17, Appendix 6, Lemma 5]).

3. A matroid configuration and the main theorem

In this section, we shall find the Betti numbers and the shifts of a graded
minimal free resolution of the 2nd order symbolic power of the ideal of a star
configuration (not necessarily linear star configuration) in P" of type (r,s)
defined by s-general forms in R = k[zg, 21, ...,2,] with 1 <7 < min{n, s} and
n > 2.

We first introduce some important results of the 2nd order symbolic power
of the ideal of a linear star configuration in P" in [9, 10].

Remark 3.1 ([10, Remark 2.11]). Let X be a linear star configuration in P
of type (r,s) with 2 < r < min{n,s}. By [10, Proposition 2.9], the Artinian
reduction of the homogeneous coordinate ring of X is k[ty,...,t.]/m* "1,
where m = (t1,...,t,). Since m*~"*! is generated by the maximal minor of
the (s —r + 1) x s matrix

ty ty -ty 0 0 0
0 t, to - t. O 0
0 0 t1 to U3 t,

the graded Betti numbers of the homogeneous coordinate ring of X are those
given by Eagon-Northcott resolution of the maximal minors of a generic matrix
of size (s —r+1) x s [12]. Denoting by ES a graded minimal free resolution
of Ix, we get that

s s s—r+/0—-1
rkEé):(s—r—&—f)-( 0-1 )

Theorem 3.2 ([9, Theorem 3.2]). With notation as above, let X be a linear
star configuration in P™ of type (r,s). Then a graded minimal free resolution

of R/I is

0—>]Fr—>-~-—>]F1—>R—>R/I;(§2)—>0,
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where
Fr =B (—(s—r+ 1) @B (—(s —r + 1)) @ ES Y
for £ > 1. More precisely,
F,=R™(—(2s—2r—¢—1)) @ R"(—(s—r—£—1)),

where
8 .
m (s—r+1>’ ifl=1,
Z:
s s—r+l—1 s s—r+l—1 )
: : <t<
(sfr+€) ( (-1 )+(sfr+£) ( l—2 )’ f2<tsrm,
and
s s—r+/ i
. <{<r—
ng = (s—r+£+1> ( -1 )’ flstsr—1,
07 Zf L=
We recall a few of concepts for simplicial complexes. Define [s]={1,2,...,s}.

A matroid A on a vertax set [s] is a nonempty collection of subsets of [s] that is
closed under inclusion and satisfies the following property. If A, B are in A and
|A| > |B|, then there is some i € A such that BU{i} € A. We will consider A
as a simplicial complex.

Let S = K|[t1,...,ts]. For a subset A C [s], we write t4 for the square free
monomial [],c 4 t;. The Stanley-Reisner ideal of A is In = (ta | A C [s],A ¢
A) and the corresponding Stanley-Reisner ring is k[A] = S/Ia.

Note that if we look at the minimal free S-resolution of S/Ia, then the
entries in all the maps are monomials in the y;. Moreover, replacing each y;
by F; and each S by R give the minimal free resolution of R/y.(Ia). So the
formula F ®g R implies the following two meanings.

(a) The variable y; in S = Kk[y1,...,ys] moves to a form F; in R =
k[zo, x1,...,zn], and
(b) an S free module F; changes to an R free module F; ®g R for £ > 1.

Theorem 3.3 ([10, Theorem 3.3]). Let A be a matroid on [s] of dimension s —
r—1. Assume f1,...,fs € R =K[zo,21,...,2,] are homogeneous polynomials
such that any subset of at most v + 1 of them forms an R-regular sequence.
Consider the ring homomorphism

w:S=Kk[t1,...,ts] = R, t; — fi.

Let I be an ideal of S. We write p.(I) to denote the ideal in R generated
by o(I). If Fya) is a graded minimal free resolution of k[A] over S, then
Fya) ®s R is a graded minimal free resolution of R/@.(Ia) over R.

The ideal ¢, (Ia) is said to be obtained by specialization from the matroid
ideal Ian. The subscheme of P™ defined by ¢.(Ia) is called a matroid configu-
ration [10].
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Notice that a linear star configuration in P" is one of the matroid configu-
ration, we shall use [10, Theorem 3.3] for the proof of this theorem. So we are
now ready to find the Betti numbers and the shifts of a graded minimal free
resolution of the 2nd order symbolic power of the ideal of a star configuration
in P".

Theorem 3.4. Let X be a star configuration in P™ of type (r,s) defined by
s-general forms Fy,...,Fs in R = K[zo,x1,...,2,] of degrees dy,...,ds with
2 < r < min{n,s}, and let d = d; + -+ + ds. Then a graded minimal free
resolution of R/Ig) is

0O - G — - = G — R — R/IY = o
where

Gl{ D R(2(d(di1+m+d“_l)))]

1<t < <ip—1<s

o B Rt

1<i) <-+<ip_2<s

GzZ[ (a5 [ P R(f(z(df(di]+---+di,_,£)))7(dkl+---+dk271))H

1<ip <o <ipp<s  k1<--<kg—1
"
o @ RTCE @, ),
1<i1 < <igro1)—2<s

where {ki,...,ke_1} runs through (S_Z(ize)) -times among {ji, ..., Js—(r—0)} =

{1,2,...,8} = {i1,...,ir—¢}, and
G, = b R(—(2d — (di, + -+ d;,_,))).
1<i < <ip_1<s
Proof. Let S =K][t1,...,ts]. Consider the ideal of S
I(’I',S) = ﬂ <ti17ti25 s atir>a
1<i1 <2<+ <4 <5

generated by all products of s — r + 1 distinct variables in {t1,...,ts} (see
Theorem 2.2). It is the Stanley-Reisner ideal of a uniform matroid on [s].
Recall the map

(3.1) v: S =Kk[yi,...,ys] > R, y; = Fj.
Then

2
IS(Q ) = W*(I(T,S))'
Notice that

(3.2) Ix = > (M)

1<iy < <ip_1<s
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and the /-th free module of a graded minimal free resolution of the ideal I ((72-)3)
([10, Theorem 3.2]) is

Fo=R™(—(2s—2r+L+1)®R"(—(s—r+£+1)),

S : —
(s—r—i—l)’ ifl=1,

my =
S s—r+¢—-1 s s—r4+fl—1 .
’ : </ <
<sfr+£> ( /-1 )+(S,T+5) ( /_9 ), if2<e<r,

and
( s )(“’"”), Fl<e<r—1,
ne = s—r+4+1 -1

0, if b =r.
By Theorem 3.3, the ¢-th free module of a graded minimal free resolution of
the ideal R/I{Y is

where

F, ®s R.

Recall that the maps appeared in the minimal free resolution of S/Ia are
obtained from Eagon-Northcott resolution and the mapping cone construction
from Basic Double G-Linkage ([9, Proposition 2.6]). As we mentioned before,
the entries in all the maps in the minimal free resolution of S/Ia are monomials
in the y;, and replacing each y; by F; and each S by R gives the minimal free
resolution of R/p.(Ia). Hence one can conclude that

s d, and 183 d,.

e Let £ = 1. By equation (3.2) and Remark 3.1, we have
Ep*(~(s—r+ 1) @s R = [SC2)(~(s— (r = )] (~(s - (r 1)) @s R
=50 (=2(s - (r-1)) @5 R
= &P S(=2(s—(r—1))®s R

1<i1<-+<4r—1<s

= @  R(-2d-(dy+-+d;_,)), and

1<ii < <tp_1<s

By s R = [$05)((s — (r—2))] @5 R

s

- S(rfz)(—(s —(r—2)))®s R
= @ S(—2(s—(r—2)))®s R

1<i < <ip_2<s

- D RCU-(ht+d ).

1<i1 < <ip_2<s
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Thus
Gi=F,®sR
=E”(—(s—(r—1)) Qs R® EI_LS ®s R

:[ D R(—Q(d—(dil-i-""Fdirl)))}

1<i1 < <ip_1<s

® { P Rld—(dy+- +di,.2>>>]

1<y <+ <ip_2<s
s—r+f—-1
-1 ’

rk]Eé’l;—ll,s) _ < s ) . (s —r+L— 1>’ and thus

e Let 1 < ¢ < r. Recall that

KE(™) = i
T < —(r—10)

s—(r—12) -2
s—(r—12)
-1 '
E{ +E{ M = 80-c-0) () (s - (r - 1)),
Now consider the case {d;,,...,d; _,} of degrees among {d1,...,ds}. Then the

complement case of the case {d;,,...,d; _,} among {dy,...,ds}is{dy,...,ds}—
{diy,...,di,_,}. So there is a one to one correspondence between two cases as

{dil,. .. 7dir7(} <> {dl, .. .,ds} — {di17 . 7dir7(} = {dju .. '7djs—(rr~—€)}'
Recall the map

S

.8 r—1,s

So

p:S=kly1,...,ys] > R, y;— F;, forevery i=1,...,s.
Hence the shift (s — (r —¢)) in the ¢-th free module Fy of a graded minimal free
resolution of S/I(, s changes to the shift (d — (d;, +---+d;,_,)) = (dj, +---+

dd;(,‘f@)) in the /-th free module of a graded minimal free resolution of R/Is(f).

s

In other words, there is a one to one correspondence between two shifts as

(s=(r=0)%  (d—(di +- - +di,_,))

=(dj, +--+dg;__ ), and so

(r—0)
S0 (—(s— (r—0)) & §l-c-0)(—(s— (r—0))@s R
— 3 R(—(d—(diy + -+ d;._,)))

1<y < <ip_p<s

- Z R(_(djl +...+djs—(r—z)))>'

1<ji<<js—(r—)<s
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Note that
(s—r+1)=(s=(r—0)-(-1),
and thus
(s=(=0)+(s-—r+)=(-(-0)+((s=(r—-0)-(-1))
=2(s—(r—4¥)—({-1).
This implies that each (S_Z(:Iz))—times shift (s — (r—¥£)) of the ¢-th free module
F; of a graded minimal free resolution of S/I ((f)s) changes to the shifts of the
¢-th free module G, of a graded minimal free resolution of R/ 13(5) as
(s=(r=0)+(-r+)=(E-(r-0)+{(s=(r=0)-(-1)
=2(s—(r—4£)—-((-1)
B 2d = (diy 4o di ) = (i o dry )
= 2(dj1 +oet djs—(r—l)) = (diy + -+ +dy,_,),

where {ki,...,k¢_1} runs through (S_e(izz))—times among

{jlv s 7js—(7‘—2)} = {]—727 e '75} - {ila s 7irff}'

So, with notations as above

(3.3) {S(sf@—e))(s_z(ffﬂ) (s —(r— g))} (—(s—r+1))

s—(r—£)

= 5l CED (25 - (= 0) = (€= 1))
B | B RERE- et di ) = @+ di )]

1<ip <o <ip—p<s k1<-<kg_1

Thus,
B + B ] (~(s —r+ 1)) @5 R

_ [S(s—(i%))'(kéq#)) (—(s— (r— e)))} (—(s—r+1)®s R

- D [ P R~ (di + - +drg)) = (d, + - +dr,_,)))|-

1<i1 <+ <ip_y<s k1<--<kge_1
Moreover,
r—1,s
s—(r—1)+£—1
s—(r )1 )

= [S((r—i)—é)'( ¢ (=(s=((r=1)—=10))] ®s R
- P s -n-0)]esk

1<in <o <igro1y)—¢<s

B @ R(szje)(_(d _ (dl + o+ d(T71)—Z)))'

1<i1 < <iro1)—2 <8
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Hence
G=F,®s R

= [[E(~(s = (r = 1)) @5 R] @ [E{ " (~(s = (r = 1)) @5 R]|

® [Eérfl,s) R R]

| @ [ @ reCU-G )~ )|

1<i1 < <ip—p<s  k1<-<ke—1

3 |: @ R(SZ;J)(_(CZ —(di+ -+ dr-1)-¢)))

1<in < <ipo1)—e<s

)

where {ki,..., k¢_1} runs through (Sfé(fze))—times among

{j17'~'ajs—(r—€)} = {1727“'78} - {ilw--ai?‘—f}'
e Let / =r. Then

E(")(~(s — (r—1))) ®s R

s—1

= [$C=)(=s)](~(s— (r —1)) @5 R

= [$C5) (=25 - (r—1)))] ®@s R, and
BV (—(s—(r—1)@s R
= [SC(=9))(~(s - (r-1) @5 R
= [$022) (= (25 — (r — 1)) @s R.
Thus
G,=F, ®s R
=E)(—(s— (r—1)) ®s ROE! " (~(s — (r — 1)) ®s R
= [SCD(—(25 — (r — 1)) @5 B] @ [SG-3) (~(25 — (r — 1)) @5 K]
= SGI)(—(2s— (r—1)) ®@s R
= EB S(—(2s—(r—1))) ®s R

1<i < <ip_1<s
= @ R(7(2d7 (dil +..'+dir—1))))
1<iy < <ip_1<5

as we wished.
This completes the proof. ([
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Example 3.5. Consider a star configuration X in P" of type (3,4) defined by
general forms in R = k[zg, x1,...,%,] of degrees 2,3,5, and 8 with n > 3. We
now calculate the graded Betti numbers and the shifts of a graded minimal free
resolution of R/Ig). Let
d1:2, d2:3, d3:5, d4:8, and d:d1+d2+d3+d4:18,
and let
0—Gs— Gy — Gy — R— R/IP -0

be a graded minimal free resolution of R/ Is(gQ)-
e First we calculate the graded Betti numbers and the shifts of the first free
module G;. Recall that, by Theorem 3.4,

Gi=| @ A rd)] e | B Re-@-a),
1<iy <ig<4 1<i<s
and so we get the shifts of Gy as follows.

’ 2(d7 (d'Ll +di2)) ‘ ‘

2(d — (dz + dg)) | 10 d—d)] |
2(d — (dg + d4)) 14 d—d; 16
2(d — (da+ds)) |20 and d—dy | 15
2(d - (d1 + d4)) 16 d—ds |13
2(d — (di + d3)) | 22 d—dy |10
2(d — (d1 +dg)) | 26

Thus
Gy = R(—10)* ® R(—13) ® R(—14) @ R(—15) & R*(—16)
@ R(—20) ® R(—22) ® R(—26).
e Let ¢ = 2. By Theorem 3.4,
Gy = [ P [P r-Cd-d)- dj))H ® R (—d).
1<i<4  j#i
So we have the following shifts in Go as

(2d—d)) | || j#i [2(d—di)—d;]

(

2(d—dy) |20 [ di,do,ds | 18,17,15

2(d —d3) | 26 || di,do,dy | 24,23,18 and [d,d,d]18,18,18 | .
2(d—dy) |30 | di,ds,ds | 28,25,22

2(d—dy) | 32| da, ds,dy | 29,27,24

Hence we get that
Gy = R(—15) ® R(—17) @ R(—18)° @ R(—22) ® R(—23) ® R(—24)?
@ R(—25) & R(—27) & R(—28) ® R(—29).
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e Let ¢ =r = 3. By Theorem 3.4,
Gs= @ R(-(2d—(di +di,))).
1<y <ia<4
So we have the following shifts in G3 as:
’ Qd—(dil—f—diz) ‘ ‘

2d — (dl + d2) 31
54— (di +ds) | 29
2d — (dl + d4) 26
2d — (dg + dg) 28
2d — (d2 + d4) 25
2d — (dg, + d4) 23

Hence we have
Gs = R(—23) ® R(—25) @ R(—26) ® R(—28) ® R(—29) ® R(—31).
Therefore a graded minimal free resolution of R/ I§(§2) is
0 — R(—23) ® R(—25) ® R(—26) @ R(—28) ® R(—29) & R(—31)
— [R(—15) ® R(—17) ® R(—18)° & R(—22) & R(—23) & R(—24)*
® R(—25) ® R(—27) ® R(—28) & R(—29)]
— R(—10)? @ R(—13) ® R(—14) @ R(—15) © R*(—16) @ R(—20)
@© R(—22) ® R(—26)
- R — R/Ig) — 0.

As a special case of Theorem 3.4 with codimension 2, i.e., r = 2, the following
corollary is immediate.

Corollary 3.6 ([8, Theorem 5.3]). Let X be a star configuration in P™ of type
(2, ) defined by s-general forms in R = k[xg, x1,...,2,] of degrees dy, ..., ds
with s > 2, and let d =di +---+ds. Then a graded minimal free resolution of
R/ is

0 P R(-(2d—di)) — R(—d)@[ D R(—(2(d—d:)))| = R — R/I — 0.

1<i<s 1<i<s
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