ON SOME TYPE ELEMENTS OF ZERO-SYMMETRIC NEAR-RING OF POLYNOMIALS

Ebrahim Hashemi and Fatemeh Shokuhifar

Abstract

Let R be a commutative ring with unity. In this paper, we characterize the unit elements, the regular elements, the π-regular elements and the clean elements of zero-symmetric near-ring of polynomials $R_{0}[x]$, when $\operatorname{nil}(R)^{2}=0$. Moreover, it is shown that the set of π-regular elements of $R_{0}[x]$ forms a semigroup. These results are somewhat surprising since, in contrast to the polynomial ring case, the near-ring of polynomials has substitution for its "multiplication" operation.

1. Introduction and preliminary definitions

Through this paper, all rings are commutative with unity and all nearrings are abelian left near-ring with unity. A set N together with two binary operations " + " and "." is called left near-ring if $(N,+)$ is a group, (N, \cdot) is a semigroup and $a \cdot(b+c)=a \cdot b+a \cdot c$ for each $a, b, c \in N$. If $(N,+)$ is abelian, then we call N abelian.

For a near-ring $N, N_{0}=\{a \in N \mid 0 \cdot a=0\}$ is called the zero-symmetric part of $N, N_{c}=\{a \in N \mid 0 \cdot a=a\}$ is called the constant part of N. A nearring N is called zero-symmetric if $N=N_{0}$. A near-ring N is called constant near-ring if $N_{c}=N$. Also, a subgroup M of a near-ring N with $M M \subseteq M$ is called a subnear-ring of N. Thus N_{0} and N_{c} are subnear-rings of N. The most general class of examples of zero-symmetric near-rings comes from the following construction: Let $(G,+)$ be a not necessarily abelian group. Then the set $M_{0}(G)$ of all functions $f: G \rightarrow G$ with $f(0)=0$ under pointwise addition + and function composition \circ determines a zero-symmetric near-ring $\left(M_{0}(G),+, \circ\right)$. Evidently, also each ring is a zero-symmetric (left) near-ring and so we may view near-rings as generalized rings. For basic definitions and comprehensive discussion on near-rings, we refer the reader to [11].

[^0]Recall that, a near-ring N is a near-field, if every nonzero element $a \in N$ has multiplicatively inverse a^{-1}. Thus the nonzero elements of N form a group under multiplication.

A subgroup M of $(N,+)$ is called N-subgroup, if $M N \subseteq M$. It is proved that N is a zero-symmetric near-ring if and only if each right ideal of N is an N-subgroup of N by [11, Proposition 1.34]. A zero-symmetric near-ring N is called local if $L=\{k \in N \mid k N \neq N\}$ is an N-subgroup. Near-fields are local near-rings with $L=0$. Maxson in [9, Theorem 4.2], proved that if N is a local near-ring, then N contains no idempotent other than 0 and 1. A near-ring N is called integral, if N has no nonzero zero divisor.

For a near-ring $N, \operatorname{nil}(N), \operatorname{idem}(N)$ and $U(N)$ denote the set of all nilpotent elements of N, the set of all idempotent elements of N and the set of all units of N, respectively. Given a ring or near-ring N, we say that it is reduced if it has no nonzero nilpotent element. Also, we write $Z_{\ell}(N), Z_{r}(N)$ and $Z(N)$ for the set of all left zero divisors of N, the set of all right zero divisors and the set $Z_{\ell}(N) \cup Z_{r}(N)$, respectively.

An element a of a near-ring N is called regular if there exists $b \in N$ such that $a=a b a$. The set of all regular elements of N is denoted by $\operatorname{vnr}(N)$. A near-ring N is called regular, whenever $\operatorname{vnr}(N)=N$. For example, every constant nearring is regular. Further, Beidleman in [2], proved that the near-rings $M(G)$ and $M_{0}(G)$ are regular. Also, he showed that a regular near-ring with identity contains no nonzero nil N-subgroup. In [4], Chao proved that if N is a reduced zero-symmetric near-ring with unity, then N is regular if and only if $a N$ is a direct summand of N for each $a \in N$. According to [11, p. 347], a regular near-ring with identity is integral if and only if it is a near-field. Properties of regular near-rings have been studied by Ghoudhari, Goyal, Heatherly, Hongan, Ligh, Mason and Murty. Their main results are suggested in the book [11].

A near-ring N is said to be π-regular if for each element $a \in N$, there exists a positive integer n such that a^{n} is a regular element, that is, $a^{n}=a^{n} b a^{n}$ for some $b \in N$. Such an element a is called π-regular. The set of all π-regular elements of N is denoted by $\pi-r(N)$. Clearly every regular near-ring is π regular, but Cho in [5] gives an example of a π-regular near-ring which is not regular. As in [10] for a ring, we say that an element a of a near-ring N is clean if a is the sum of a unit and an idempotent of R. The set of all clean elements of N is denoted by $\operatorname{cln}(N)$. Moreover, N is said to be a clean near-ring if $\operatorname{cln}(N)=N$.

We say that a subset S of a ring or near-ring is locally nilpotent if for any finite subset $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\} \subseteq S$, there exists an integer k such that any product of k elements from $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ is zero. In other words, S is locally nilpotent if any subring without identity generated by a finite number of elements in S is nilpotent.

Let R be a ring. Since $R[x]$ is an abelian near-ring under addition and substitution, it is natural to investigate the near-ring of polynomials $(R[x],+, \circ)$. The binary operation of substitution, denoted by " \circ ", of one polynomial into
another is both natural and important in the theory of polynomials. We adopt the convention that for polynomials $(x) f=\sum_{i=0}^{m} a_{i} x^{i}$ and $(x) g \in R[x]$,

$$
(x) g \circ(x) f=\sum_{i=0}^{m} a_{i}((x) g)^{i} .
$$

For example, $\left(a_{0}+a_{1} x\right) \circ x^{2}=\left(a_{0}+a_{1} x\right)^{2}=a_{0}^{2}+\left(a_{0} a_{1}+a_{1} a_{0}\right) x+a_{1}^{2} x^{2}$. However, the operation \circ, left distributes but does not right distribute over addition. Thus $(R[x],+, \circ)$ forms a left near-ring but not a ring. We use $R[x]$ to denote the left near-ring $(R[x],+, \circ)$ with coefficients from R and $R_{0}[x]=$ $\{(x) f \mid(x) f$ has zero constant term $\}$ is the zero-symmetric left near-ring of polynomials with coefficients in R. Also, for each $(x) f=\sum_{i=0}^{m} a_{i} x^{i}$ and $(x) g=$ $\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$, we write $(x) f(x) g=\sum_{k=0}^{n+m}\left(\sum_{i+j=k} a_{i} b_{j}\right) x^{k}$.

In this paper, we characterize all of the unit elements, the regular elements, the π-regular elements and the clean elements of the zero-symmetric nearring $R_{0}[x]$, when R is a commutative ring with $\operatorname{nil}(R)^{2}=0$. Also, we prove that $\operatorname{vnr}\left(R_{0}[x]\right)$ is a subnear-ring of $R_{0}[x]$ if and only if $\operatorname{vnr}(R)$ is a subring of R. Moreover, it is shown that the set of π-regular elements of $R_{0}[x]$ is multiplicatively closed. These results are somewhat surprising since, in contrast to the polynomial ring case, the near-ring of polynomials has substitution for its "multiplication" operation.

2. Regular elements

In this section we investigate regular elements of the near-ring $R_{0}[x]$, when R is a commutative ring with $\operatorname{nil}(R)^{2}=0$.
Theorem 2.1. Let N be a near-ring with central idempotents.
(1) Let $a \in N$. If $a b a=a$ for some $b \in N$, then $a b=b a$ is an idempotent of N.
(2) $\operatorname{vnr}(N)$ is multiplicatively closed.
(3) $\operatorname{vnr}(N) \cap \operatorname{nil}(N)=\{0\}$.
(4) $U(N) \cup \operatorname{Idem}(N) \subseteq \operatorname{vnr}(N) \subseteq U(N) \cup \mathrm{Z}(N)$.
(5) $\operatorname{vnr}(N)=U(N) \cup\{0\}$ if and only if $\operatorname{Idem}(N)=\{0,1\}$. In particular, $\operatorname{vnr}(N)=U(N) \cup\{0\}$ if N is either integral or local.
(6) $\operatorname{vnr}(N)$ contains a nonzero nonunit if and only if $\operatorname{Idem}(N) \neq\{0,1\}$.

Proof. (1) Let $a \in \operatorname{vnr}(N)$. Then $a=a b a$ for some $b \in N$. Hence $a b=(a b)^{2}=$ $a b a b=a(b a) b=(b a) a b=b(a b) a=(b a)^{2}=b a$, since $a b$ and $b a$ are central idempotents.
(2) Let $a, a^{\prime} \in \operatorname{vnr}(N)$. Then $a=a b a$ and $a^{\prime}=a^{\prime} c a^{\prime}$ for some $b, c \in R$. Since idempotent elements of N are central, it follows that $a a^{\prime}=(a b a)\left(a^{\prime} c a^{\prime}\right)=$ $a a^{\prime}(c b) a a^{\prime}$ by (1).

By a similar argument one can prove the other statements.
Proposition 2.2. Let N be a near-ring which whose idempotents are central. If $a \in \operatorname{vnr}(N)$, then there exists a unique $b \in N$ with $a b a=a$ and $b a b=b$.

Proof. Suppose that $a \in \operatorname{vnr}(N)$. Then $a=a c a$ for some $c \in N$. Let $b=c a c$, hence $c a=a c \in \operatorname{Idem}(N)$ by Theorem 2.1. Thus $a b a=a$ and $b a b=b$. Now assume that there exists $b_{1} \in N$ such that $a b_{1} a=a$ and $b_{1} a b_{1}=b_{1}$. Thus $b_{1} a=a b_{1} \in \operatorname{Idem}(N)$ by Theorem 2.1. So we have $b_{1}=b_{1} a b_{1}=b_{1}(a b a) b_{1}=$ $b_{1}\left(a b_{1} a\right) b=b_{1} a b=b_{1}(a b a) b=b a b_{1} a b=b$. Therefore b is unique.

Since every idempotent is central in each commutative ring, then by [7, Lemma 2.1], we have the following result.

Lemma 2.3. Let R be a commutative ring and $(x) f \in R_{0}[x]$. Then $(x) f$ is an idempotent element of the near-ring $R_{0}[x]$ if and only if $(x) f=e_{1} x$, where e_{1} is an idempotent of R. In particular, the idempotent elements of $R_{0}[x]$ are central.

For each $(x) f \in R_{0}[x]$ and positive integer n, we write

$$
((x) f)^{(n)}=\underbrace{(x) f \circ(x) f \circ \cdots \circ(x) f}_{n} .
$$

Lemma 2.4. Let R be a reduced commutative ring and $(x) f=\sum_{i=1}^{m} a_{i} x^{i}$, $(x) g=\sum_{j=1}^{n} b_{j} x^{j} \in R_{0}[x]$. If $(x) g \circ(x) f=c x$, then $a_{1} b_{1}=c$ and $a_{i} b_{j}=0$ for $i+j \neq 2$.

Proof. Let $n=1$. Then $(x) g \circ(x) f=a_{1}\left(b_{1} x\right)+\cdots+a_{m}\left(b_{1} x\right)^{m}=c x$. Hence $a_{1} b_{1}=c$ and $a_{i} b_{1}=0$ for $i=2, \ldots, m$, since $a_{i} b_{1}^{i}=0$ and R is reduced. Now assume that $n>1$. Then we have

$$
\begin{equation*}
(x) g \circ(x) f=a_{1}((x) g)+a_{2}((x) g)^{2}+\cdots+a_{m}((x) g)^{m}=c x \tag{2.1}
\end{equation*}
$$

which implies that $a_{1} b_{1}=c$ and $a_{m} b_{n}^{m}=0$, since it is the leading coefficient of Eq. (2.1). Thus $a_{m} b_{n}=b_{n} a_{m}=0$, since R is reduced. By multiplying b_{n} to Eq. (2.1), we obtain

$$
\begin{equation*}
b_{n} a_{1}((x) g)+b_{n} a_{2}((x) g)^{2}+\cdots+b_{n} a_{m-1}((x) g)^{m-1}=b_{n} c x . \tag{2.2}
\end{equation*}
$$

Hence $b_{n} a_{m-1}\left(b_{n}\right)^{m-1}=0$, since it is the leading coefficient of Eq. (2.2). Therefore $b_{n} a_{m-1}=a_{m-1} b_{n}=0$, since R is reduced. Inductively, we have $b_{n} a_{i}=a_{i} b_{n}=0$ for $i=1, \ldots, m$. Hence from Eq. (2.1) we have $\left(\sum_{j=1}^{n-1} b_{j} x^{j}\right) \circ$ $\left(\sum_{i=1}^{m} a_{i} x^{i}\right)=c x$. Continuing this process, one can prove that $b_{j} a_{i}=a_{i} b_{j}=0$ for $i+j \neq 2$.

It is well known that if R is a commutative ring, then $(x) f=\sum_{i=0}^{m} a_{i} x^{i}$ is a unit element of the polynomial ring $R[x]$ if and only if $a_{0} \in U(R)$ and $a_{1}, \ldots, a_{m} \in \operatorname{nil}(R)$. In the next theorem, we determine unit elements of the near-ring $R_{0}[x]$, when R is a commutative ring with $\operatorname{nil}(R)^{2}=0$.

Theorem 2.5. Let R be a commutative ring with $\operatorname{nil}(R)^{2}=0$. Then $(x) f=$ $\sum_{i=1}^{m} a_{i} x^{i} \in U\left(R_{0}[x]\right)$ if and only if $a_{1} \in U(R)$ and $a_{2}, \ldots, a_{m} \in \operatorname{nil}(R)$.

Proof. Suppose that $(x) f \in U\left(R_{0}[x]\right)$. Then $(x) f \circ(x) g=(x) g \circ(x) f=x$ for some $(x) g=\sum_{j=1}^{n} b_{j} x^{j} \in R_{0}[x]$. Since $\operatorname{nil}(R)$ is an ideal of R, it follows that $\bar{R}=R / \operatorname{nil}(R)$ is reduced and so $(x) \bar{f} \circ(x) \bar{g}=(x) \bar{g} \circ(x) \bar{f}=\overline{1} x=(1+\operatorname{nil}(R)) x$, where $(x) \bar{f}=\sum_{i=1}^{m}\left(a_{i}+\operatorname{nil}(R)\right) x^{i}$ and $(x) \bar{g}=\sum_{j=1}^{n}\left(b_{j}+\operatorname{nil}(R)\right) x^{j}$. By Lemma 2.4, $\bar{a}_{1} \bar{b}_{1}=\bar{b}_{1} \bar{a}_{1}=\overline{1}$ and $\bar{b}_{1} \bar{a}_{i}=\overline{0}$ for $i=2, \ldots, m$, which implies that $\bar{a}_{i}=\overline{0}$ for $i=2, \ldots, m$. Since $\operatorname{nil}(R) \subseteq J(R)$, it follows that $a_{1} \in U(R)$ and $a_{i} \in \operatorname{nil}(R)$ for $i=2, \ldots, m$.

Conversely, let $(x) f=a_{0} x+a_{1} x^{2}+\cdots+a_{n} x^{n+1}$, where $a_{0} \in U(R)$ and $a_{1}, a_{2}, \ldots, a_{n} \in \operatorname{nil}(R)$. We show that $(x) f$ has right and left inverse. Since R is commutative, then $(x) f_{1}=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ is a unit element of the polynomial ring $R[x]$. Thus there exists $(x) g=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ of $R[x]$ such that $(x) f_{1}(x) g=(x) g(x) f_{1}=1$. Hence $b_{0} \in U(R)$ and $b_{1}, \ldots, b_{m} \in \operatorname{nil}(R)$. Since $\operatorname{nil}(R[x])=\operatorname{nil}(R)[x]$, it follows that $(x) g_{1}=b_{1} x+\cdots+b_{m} x^{m}$ is a nilpotent element of the polynomial ring $R[x]$ and so there is a non-negative integer k such that $\left((x) g_{1}\right)^{k}=0$, which implies that $\operatorname{deg}\left[((x) g)^{t}\right] \leq(k-1) m$ for each $t \geq k$. Put $r=(k-1) m$. We have to find $(x) h=h_{1} x+h_{2} x^{2}+\cdots+h_{r+1} x^{r+1} \in R_{0}[x]$ such that $(x) f \circ(x) h=x$. Then we have

$$
\begin{aligned}
& (x) f \circ(x) h=x \\
\Leftrightarrow & h_{1}((x) f)+h_{2}((x) f)^{2}+\cdots+h_{r+1}((x) f)^{r+1}=x \\
\Leftrightarrow & {\left[h_{1}+h_{2}((x) f)+\cdots+h_{r+1}((x) f)^{r}\right](x) f=x } \\
\Leftrightarrow & {\left[h_{1}+h_{2}((x) f)+\cdots+h_{r+1}((x) f)^{r}\right](x) f_{1}=1 } \\
\Leftrightarrow & {\left[h_{1}+h_{2}((x) f)+\cdots+h_{r+1}((x) f)^{r}\right]=(x) g } \\
\Leftrightarrow & {\left[h_{2} x\left((x) f_{1}\right)+\cdots+h_{r+1} x^{r}\left((x) f_{1}\right)^{r}\right]=(x) g-h_{1} } \\
\Leftrightarrow & {\left[h_{2} x+\cdots+h_{r+1} x^{r}\left((x) f_{1}\right)^{r-1}\right]\left((x) f_{1}\right)=(x) g-h_{1} } \\
\Leftrightarrow & {\left[h_{2} x+\cdots+h_{r+1} x^{r}\left((x) f_{1}\right)^{r-1}\right]=\left((x) g-h_{1}\right)(x) g } \\
\Leftrightarrow & {\left[h_{3} x^{2}\left((x) f_{1}\right)+\cdots+h_{r+1} x^{r}\left((x) f_{1}\right)^{r-1}\right]=((x) g)^{2}-h_{1}((x) g)-h_{2} x } \\
\Leftrightarrow & {\left[h_{3} x^{2}+\cdots+h_{r+1} x^{r}\left((x) f_{1}\right)^{r-2}\right]\left((x) f_{1}\right)=((x) g)^{2}-h_{1}((x) g)-h_{2} x } \\
\Leftrightarrow & {\left[h_{3} x^{2}+\cdots+h_{r+1} x^{r}\left((x) f_{1}\right)^{r-2}\right]=((x) g)^{3}-h_{1}((x) g)^{2}-h_{2} x((x) g) } \\
\vdots & \\
\Leftrightarrow & ((x) g)^{r+1}-h_{1}((x) g)^{r}-\cdots-h_{r} x^{r-1}(x) g-h_{r+1} x^{r}=0 \\
\Leftrightarrow & h_{1}=b_{0}, h_{2}=b_{0} b_{1}, h_{3}=b_{0}^{2} b_{2}+b_{0} b_{1}^{2}, \cdots, \\
& h_{r+1}=\sum_{i_{1}+\cdots+i_{r+1}=r} b_{i_{1} \cdots b_{i_{r+1}}-h_{1} \sum_{i_{1}+\cdots+i_{r}=r} b_{i_{1}} \ldots b_{i_{r}}-\cdots-h_{r} b_{1},}
\end{aligned}
$$

where $b_{i_{j}} \in\left\{b_{0}, b_{1}, \ldots, b_{m}\right\}$ for $j=1, \ldots, r+1$. Hence $(x) h$ is a right inverse for $(x) f$.

Since $b_{0} \in U(R)$ and $\left\{b_{1}, \ldots, b_{m}\right\} \subseteq \operatorname{nil}(R)$, hence $h_{1} \in U(R)$ and $\left\{h_{2}, \ldots\right.$, $\left.h_{r+1}\right\} \subseteq \operatorname{nil}(R)$. Thus with a similar argument as used in the previous paragraph, one can find $(x) k \in R_{0}[x]$ such that $(x) h \circ(x) k=x$. Hence $(x) h \in$ $U\left(R_{0}[x]\right)$, which implies that $(x) f \in U\left(R_{0}[x]\right)$.

Corollary 2.6. Let R be a commutative ring with $\operatorname{nil}(R)^{2}=0$. Then $U\left(R_{0}[x]\right)$ $=U(R) x+\operatorname{nil}\left(R_{0}[x]\right)$. In particular, if R is reduced, then $U\left(R_{0}[x]\right)=\{u x \mid$ $u \in U(R)\}$.

Corollary 2.7. Let R be a commutative ring with $\operatorname{nil}(R)^{2}=0$ and $(x) f \in$ $R_{0}[x]$. If $(x) f$ has right or left inverse, then $(x) f$ is invertible in $R_{0}[x]$.
Proof. It follows from the proof of Theorem 2.5.
Let R be a commutative ring and $a \in R$. Anderson and Badawi [1, Theorem 2.2], proved that $a \in \operatorname{vnr}(R)$ if and only if $a=u e$ for some $u \in U(R)$ and $e \in \operatorname{Idem}(R)$. In the next proposition, we extend this result to the near-ring $R_{0}[x]$.
Proposition 2.8. Let R be a commutative ring and $(x) f \in R_{0}[x]$. Then the following statements are equivalent:
(1) $(x) f \in \operatorname{vnr}\left(R_{0}[x]\right)$.
(2) $(x) f=(x) f \circ(x) u \circ(x) f$ for some $(x) u \in U\left(R_{0}[x]\right)$.
(3) $(x) f=(x) u \circ(x) h$ for some $(x) h \in \operatorname{Idem}\left(R_{0}[x]\right)$ and $(x) u \in U\left(R_{0}[x]\right)$.

Proof. (1) \Rightarrow (2) Let $(x) f \in \operatorname{vnr}\left(R_{0}[x]\right)$. Then $(x) f=(x) f \circ(x) g \circ(x) f$ for some $(x) g \in R_{0}[x]$ and so we have $(x) f \circ(x) g=(x) g \circ(x) f \in \operatorname{Idem}\left(R_{0}[x]\right)$ by Theorem 2.1. Thus $(x) f \circ(x) g=e x$ for some $e \in \operatorname{Idem}(R)$ by Lemma 2.3. Clearly, $1-e$ is an idempotent of R. Let $(x) u=e x \circ(x) g+(1-e) x$. Then by using Lemma 2.3, we have

$$
\begin{aligned}
& (x) u \circ[(x) f+(1-e) x] \\
= & (x) u \circ(x) f+(x) u \circ(1-e) x \\
= & {[e x \circ(x) g+(1-e) x] \circ e x \circ(x) f+[e x \circ(x) g+(1-e) x] \circ(1-e) x } \\
= & e x \circ[e x \circ(x) g+(1-e) x] \circ(x) f+[e x \circ(x) g+(1-e) x] \circ(1-e) x \\
= & e x \circ(x) g \circ(x) f+(1-e) x \\
= & e x+(1-e) x \\
= & x
\end{aligned}
$$

and so $(x) u$ is invertible in $R_{0}[x]$ by Corollary 2.7. Further, $(1-e) x \circ(x) f=$ $(x) f \circ(1-e) x=(x) f-(x) f \circ e x=(x) f-(x) f \circ(x) g \circ(x) f=0$ by Lemma 2.3. Hence $(x) f \circ(x) u \circ(x) f=(x) f \circ[e x \circ(x) g+(1-e) x)] \circ(x) f=[((x) f \circ$ $e x) \circ(x) g+(x) f \circ(1-e) x] \circ(x) f=(x) f \circ(x) g \circ(x) f=(x) f$.
(2) \Rightarrow (3) Assume that $(x) f=(x) f \circ(x) v \circ(x) f$ for some $(x) v \in U\left(R_{0}[x]\right)$ and let $u(x)=(x) v^{-1} \in U\left(R_{0}[x]\right)$. Since $(x) h=(x) v \circ(x) f \in \operatorname{Idem}\left(R_{0}[x]\right)$, it follows that $(x) u \circ(x) h=(x) v^{-1} \circ(x) v \circ(x) f=(x) f$.
(3) \Rightarrow (1) Suppose that $(x) f=(x) u \circ(x) h$, where $(x) u \in U\left(R_{0}[x]\right)$ and $(x) h \in \operatorname{Idem}\left(R_{0}[x]\right)$. Hence by Lemma 2.3, $(x) h=e x$ for some $e \in \operatorname{Idem}(R)$. So $(x) f=(x) u \circ e x=e x \circ(x) u$, since $e x$ is central. Therefore $(x) f \circ(x) u^{-1} \circ(x) f=$ $(e x \circ(x) u) \circ(x) u^{-1} \circ(x) f=e x \circ(x) f=e x \circ(x) u \circ e x=(x) f$, since idempotents of $R_{0}[x]$ are central.

Now we give a characterization of regular elements of $R_{0}[x]$, when R is a commutative ring with $\operatorname{nil}(R)^{2}=0$.

Theorem 2.9. Let R be a commutative ring with $\operatorname{nil}(R)^{2}=0$. Then $\operatorname{vnr}\left(R_{0}[x]\right)=\left\{\sum_{i=1}^{n} a_{i} x^{i} \in R_{0}[x] \mid n \geq 1, a_{1}=u e\right.$ and $a_{i} \in e(\operatorname{nil}(R))$ for each $i \geq 2$, where $u \in U(R)$ and $e \in \operatorname{Idem}(R)\}$.
Proof. It follows directly from Proposition 2.8, Theorem 2.5 and Lemma 2.3.

Corollary 2.10. Let R be a commutative ring with $\operatorname{nil}(R)^{2}=0$. If R is reduced, then $\operatorname{vnr}\left(R_{0}[x]\right)=(\operatorname{vnr}(R)) x$. In particular, if $\operatorname{vnr}(R)$ is a subring of R, then $\operatorname{vnr}\left(R_{0}[x]\right)=(\operatorname{vnr}(R)) x$.

Proof. If $\operatorname{nil}(R)=0$, then $\operatorname{vnr}\left(R_{0}[x]\right)=(\operatorname{vnr}(R)) x$ by Theorem 2.9. Now, assume that $\operatorname{vnr}(R)$ be a subring of R. Then by [1, Theorem 2.9], R is reduced and so the result follows.

Theorem 2.11. Let R be a commutative ring with $\operatorname{nil}(R)^{2}=0$. If $\operatorname{vnr}\left(R_{0}[x]\right)$ is a subnear-ring of $R_{0}[x]$, then R is reduced and $\operatorname{vnr}\left(R_{0}[x]\right)=(\operatorname{vnr}(R)) x$.

Proof. Let $(x) f$ be a nilpotent element of $R_{0}[x]$. Then by Theorem $2.5, x+$ $(x) f \in U\left(R_{0}[x]\right) \subseteq \operatorname{vnr}\left(R_{0}[x]\right)$. Since $\operatorname{vnr}\left(R_{0}[x]\right)$ is a subnear-ring of $R_{0}[x]$, we have $(x) f=-x+(x+(x) f) \in \operatorname{vnr}\left(R_{0}[x]\right)$, which implies that $(x) f \in$ $\operatorname{vnr}\left(R_{0}[x]\right) \cap \operatorname{nil}\left(R_{0}[x]\right)=\{0\}$ by Theorem 2.1. Therefore $\operatorname{nil}\left(R_{0}[x]\right)=\{0\}$ and R is reduced by [3, Proposition 3.1]. Also, $\operatorname{vnr}\left(R_{0}[x]\right)=(\operatorname{vnr}(R)) x$ by Corollary 2.10 .

Let R be a commutative ring. Anderson and Badawi [1, Theorem 2.1], proved that the set of regular elements of R, is multiplicatively closed. Thus we have the following result.
Corollary 2.12. Let R be a commutative ring with $\operatorname{nil}(R)^{2}=0$. Then $\operatorname{vnr}\left(R_{0}[x]\right)$ is a subnear-ring of $R_{0}[x]$ if and only if $\operatorname{vnr}(R)$ is a subring of R.

Proof. If $\operatorname{vnr}\left(R_{0}[x]\right)$ is a subnear-ring of $R_{0}[x]$, then $\operatorname{vnr}\left(R_{0}[x]\right)=(\operatorname{vnr}(R)) x$ by Theorem 2.11. Hence $(\operatorname{vnr}(R)) x$ is a subgroup of $\left(R_{0}[x],+\right)$, which implies that $\operatorname{vnr}(R)$ is a subring of R by [1, Theorem 2.1].

Conversely, assume that $\operatorname{vnr}(R)$ is a subring of R. Thus $\operatorname{vnr}\left(R_{0}[x]\right)=$ $(\operatorname{vnr}(R)) x$ by Corollary 2.10. Then $\operatorname{vnr}\left(R_{0}[x]\right)$ is a subgroup of $\left(R_{0}[x],+\right)$, and so the result follows from Theorem 2.1.

Theorem 2.13. Let R be a commutative ring with $\operatorname{nil}(R)^{2}=0$ and $2 \in U(R)$. Then every $(x) f \in \operatorname{vnr}\left(R_{0}[x]\right)$ is the sum of two units of $R_{0}[x]$.
Proof. Let $(x) f=\sum_{i=1}^{m} a_{i} x^{i}$ be a regular element of $R_{0}[x]$. Then $a_{1}=u e$ and $a_{i} \in e(\operatorname{nil}(R))$ for some $u \in U(R)$ and $e \in \operatorname{Idem}(R)$ by Theorem 2.9. Hence $a_{1} \in \operatorname{vnr}(R)$ by [1, Theorem 2.2]. Since $2 \in U(R)$, it follows that $a_{1}=u^{\prime}+v^{\prime}$ for some $u^{\prime}, v^{\prime} \in U(R)$ by [1, Theorem 2.10]. Let $(x) g=u^{\prime} x$ and $(x) h=v^{\prime} x+a_{2} x^{2}+\cdots+a_{m} x^{m}$. Then $(x) g,(x) h \in U\left(R_{0}[x]\right)$ by Theorem 2.5. Hence $(x) f=(x) g+(x) h$ is the sum of two units of $R_{0}[x]$.
Theorem 2.14. Let R be a commutative ring with $\operatorname{nil}(R)^{2}=0$ and $2 \in U(R)$. Then the following statements are equivalent.
(1) $\operatorname{vnr}\left(R_{0}[x]\right)$ is a subnear-ring of $R_{0}[x]$.
(2) The sum of any four units of $R_{0}[x]$ is a regular element of $R_{0}[x]$.

Proof. (1) $\Rightarrow(2)$ It is clear since $U\left(R_{0}[x]\right) \subseteq \operatorname{vnr}\left(R_{0}[x]\right)$ by Theorem 2.1.
$(2) \Rightarrow(1)$ By Theorem 2.1, $\operatorname{vnr}\left(R_{0}[x]\right)$ is multiplicatively closed. Now, let $(x) f,(x) g \in \operatorname{vnr}\left(R_{0}[x]\right)$. Hence there exist $(x) u_{1},(x) u_{2},(x) v_{1},(x) v_{2} \in U\left(R_{0}[x]\right)$ such that $(x) f=(x) u_{1}+(x) u_{2}$ and $(x) g=(x) v_{1}+(x) v_{2}$ by Theorem 2.13. Thus $(x) f+(x) g$ is the sum of four units of $R_{0}[x]$, which implies that $(x) f+(x) g \in$ $\operatorname{vnr}\left(R_{0}[x]\right)$ by hypothesis.

Corollary 2.15. Let R be a commutative ring with $\operatorname{nil}(R)^{2}=0$ and $2 \in$ $U(R)$. If the sum of any four units of $R_{0}[x]$ is a regular element of $R_{0}[x]$, then $\operatorname{vnr}\left(R_{0}[x]\right)=(\operatorname{vnr}(R)) x$.
Proof. It follows from Theorem 2.14 and Corollaries 2.12 and 2.10.

3. π-regular elements and clean elements of $R_{0}[x]$

In this section, we investigate π-regular and clean elements of $R_{0}[x]$ when R is a commutative ring with $\operatorname{nil}(R)^{2}=0$.

Theorem 3.1. Let N be a near-ring with central idempotents. Then
(1) $\operatorname{vnr}(N) \subseteq \pi-r(N)$. In particular, each regular near-ring is π-regular near-ring.
(2) $\operatorname{vnr}(N) \cup \operatorname{nil}(N) \subseteq \pi-r(N) \subseteq U(N) \cup \mathrm{Z}(N)$.
(3) $\pi-r(N)=U(N) \cup \operatorname{nil}(N)$ if and only if $\operatorname{Idem}(N)=\{0,1\}$. In particular, $\pi-r(N)=U(N) \cup \operatorname{nil}(N)$ if N is either integral or local.
(4) $\pi-r(N)$ contains a non-nilpotent nonunit if and only if $\operatorname{Idem}(N) \neq$ $\{0,1\}$.

Proof. By a similar way as used in the proof of [1, Theorem 4.1], one can prove it.

Theorem 3.2. Let R be a commutative ring and $(x) f \in R_{0}[x]$. Then $(x) f$ is π-regular if and only if there exists $(x) g \in \operatorname{Idem}\left(R_{0}[x]\right)$ such that $(x) g \circ(x) f$ is regular and $(x-(x) g) \circ(x) f \in \operatorname{nil}\left(R_{0}[x]\right)$.

Proof. Since $(x) f$ is π-regular, then $((x) f)^{(n)}$ is regular for some $n \geq 1$. Hence $((x) f)^{(n)}=(x) u \circ(x) g$ for some $(x) u \in U\left(R_{0}[x]\right)$ and $(x) g \in \operatorname{Idem}\left(R_{0}[x]\right)$ by Proposition 2.8. By Lemma 2.3, there exists $e \in \operatorname{Idem}(R)$ such that $(x) g=e x$. First we show that $e x \circ(x) f$ is regular. Since idempotents of $R_{0}[x]$ are central, we have $e x \circ(x) f \circ\left[((x) f)^{(n-1)} \circ(x) u^{-1}\right] \circ e x \circ(x) f=\left[e x \circ((x) f)^{(n)} \circ(x) u^{-1}\right] \circ$ $e x \circ(x) f=\left[e x \circ(x) u \circ e x \circ(x) u^{-1}\right] \circ e x \circ(x) f=\left[e x \circ(x) u \circ(x) u^{-1}\right] \circ e x \circ(x) f=$ $e x \circ(x) f$, which implies that $e x \circ(x) f \in \operatorname{vnr}\left(R_{0}[x]\right)$. Also $((1-e) x \circ(x) f)^{(n)}=$ $(1-e) x \circ((x) f)^{(n)}=(1-e) x \circ(x) u \circ e x=0$, since $(1-e) x \in \operatorname{Idem}\left(R_{0}[x]\right)$. Hence $(1-e) x \circ(x) f \in \operatorname{nil}\left(R_{0}[x]\right)$.

Conversely, suppose that for some $e \in \operatorname{Idem}(R)$, ex $\circ(x) f \in \operatorname{vnr}\left(R_{0}[x]\right)$ and $(1-e) x \circ(x) f \in \operatorname{nil}\left(R_{0}[x]\right)$. Then for some $n \geq 1,0=((1-e) x \circ(x) f)^{(n)}=$ $(1-e) x \circ((x) f)^{(n)}=((x) f)^{(n)} \circ(1-e) x$, since $(1-e) x$ is a central idempotent of $R_{0}[x]$. Hence

$$
\begin{equation*}
((x) f)^{(n)}=e x \circ((x) f)^{(n)} . \tag{3.1}
\end{equation*}
$$

Since $e x \circ(x) f$ is regular, $e x \circ(x) f=(x) u \circ c x$ for some $(x) u \in U\left(R_{0}[x]\right)$ and $c \in \operatorname{Idem}(R)$ by Proposition 2.8 and Lemma 2.3. Thus $(e x \circ(x) f)^{(n)}=$ $((x) u \circ c x)^{(n)}=c x \circ((x) u)^{(n)}$. But $(e x \circ(x) f)^{(n)}=e x \circ((x) f)^{(n)}=((x) f)^{(n)}$ by Eq. (3.1). Hence $((x) f)^{(n)}=c x \circ((x) u)^{(n)}$. Let $(x) g=c x \circ\left((x) u^{-1}\right)^{(n)}$. Then $((x) f)^{(n)} \circ(x) g \circ((x) f)^{(n)}=((x) f)^{(n)} \circ c x \circ\left((x) u^{-1}\right)^{(n)} \circ((x) f)^{(n)}=$ $c x \circ((x) u)^{(n)}=((x) f)^{(n)}$, since idempotents of the near-ring $R_{0}[x]$ are central. Therefore $(x) f$ is π-regular.

Lemma 3.3. Let R be a commutative ring and $(x) f$ be a π-regular element of the near-ring $R_{0}[x]$. Then for some $(x) g \in \operatorname{Idem}\left(R_{0}[x]\right)$ and $(x) u \in U\left(R_{0}[x]\right)$ we have $(x) g \circ(x) f=(x) g \circ(x) u$.
Proof. Since $(x) f$ is π-regular, by Proposition 2.8, we have $((x) f)^{(n)}=(x) u \circ$ $(x) g$ for some $(x) g \in \operatorname{Idem}\left(R_{0}[x]\right),(x) u \in U\left(R_{0}[x]\right)$ and $n \geq 1$. By Lemma 2.3, $(x) g=e x$ for some $e \in \operatorname{Idem}(R)$. As shown in the proof of Theorem 3.2, $e x \circ(x) f$ is regular. Hence $e x \circ(x) f=c x \circ(x) v$ for some $c \in \operatorname{Idem}(R)$ and $(x) v \in U\left(R_{0}[x]\right)$ by Proposition 2.8 and Lemma 2.3. Now we show that $e=c$. Since $e x \circ(x) f=e x \circ(e x \circ(x) f)=e x \circ(c x \circ(x) v)$, we have $e c x \circ(x) v=$ $c x \circ(x) v$ and therefore $e c=c$. Since $e x$ and $c x$ are central, $(e x \circ(x) f)^{(n)}=$ $e x \circ((x) f)^{(n)}=c x \circ((x) v)^{(n)}$. Thus $e x \circ((x) f)^{(n)}=e x \circ(x) u=c x \circ((x) v)^{(n)}$, since $((x) f)^{(n)}=(x) u \circ e x$. Hence $e x=c x \circ((x) v)^{(n)} \circ(x) u^{-1}$. Thus $e c x=$ $e x \circ c x=c x \circ((x) v)^{(n)} \circ(x) u^{-1} \circ c x=c x \circ((x) v)^{(n)} \circ(x) u^{-1}$, which implies that $e c=e$. Thus $e=c$, since $e c=c$. Therefore $(x) g \circ(x) f=(x) g \circ(x) v$.

Lemma 3.4 ([8, Theorem 21.28]). Let R be a ring with unity and I a twosided nil ideal of R. If $c+I \in \operatorname{Idem}(R / I)$, then there is $e \in \operatorname{Idem}(R)$ such that $c+I=e+I$ in R / I.

Let R be a commutative ring. Then $\operatorname{nil}(R)$ is a locally nilpotent ideal of R, and so $\operatorname{nil}(R[x])=\operatorname{nil}(R)_{0}[x]$ is a right ideal of the near-ring $R[x]$ by [6, Theorem 3 and Proposition 8]. Since $\operatorname{nil}(R[x])=\operatorname{nil}\left(R_{0}[x]\right)$, then $\operatorname{nil}\left(R_{0}[x]\right)$ is a
right ideal of $R_{0}[x]$. Let $(x) f=\sum_{i=1}^{m} a_{i} x^{i} \in \operatorname{nil}\left(R_{0}[x]\right)$ and $(x) g=\sum_{j=1}^{n} b_{j} x^{j} \in$ $R_{0}[x]$. Hence $(x) g \circ(x) f=a_{1}((x) g)+\cdots+a_{m}((x) g)^{m} \in \operatorname{nil}(R)_{0}[x]=\operatorname{nil}\left(R_{0}[x]\right)$, since $a_{i} \in \operatorname{nil}(R)$. Therefore $\operatorname{nil}\left(R_{0}[x]\right)$ is a two-sided ideal of the near-ring $R_{0}[x]$. One can easy show that the map $\varphi: R_{0}[x] \longrightarrow(R / \operatorname{nil}(R))_{0}[x]$ with $\varphi\left(\sum_{i=1}^{n} a_{i} x^{i}\right)=\sum_{i=1}^{n} \overline{a_{i}} x^{i}$, where $\overline{a_{i}}=a_{i}+\operatorname{nil}(R)$ is a near-ring epimomorphism. Hence $R_{0}[x] / \operatorname{nil}\left(R_{0}[x]\right) \cong(R / \operatorname{nil}(R))_{0}[x]$.

Theorem 3.5. Let R be a commutative ring with $\operatorname{nil}(R)^{2}=0$ and $(x) f \in$ $R_{0}[x]$. Then $(x) f$ is π-regular if and only if $(x) f+\operatorname{nil}\left(R_{0}[x]\right)$ is regular.

Proof. Suppose that $(x) f$ is π-regular and $(x) \bar{f}=(x) f+\operatorname{nil}\left(R_{0}[x]\right)$. Then $((x) f)^{(n)}=((x) f)^{(n)} \circ(x) g \circ((x) f)^{(n)}$ for some $(x) g \in R_{0}[x]$ and $n \geq 1$. Hence $((x) f)^{(n)} \circ(x) g \in \operatorname{Idem}\left(R_{0}[x]\right)$. Thus by Lemma 2.3, $((x) f)^{(n)} \circ(x) g=e x$, for some $e \in \operatorname{Idem}(R)$. Therefore $((1-e) x \circ(x) f)^{(n)}=(1-e) x \circ((x) f)^{(n)}=$ $(1-e) x \circ e x \circ((x) f)^{(n)}=0$, since idempotents of $R_{0}[x]$ are central. Hence $\left[x-((x) f)^{(n)} \circ(x) g\right] \circ(x) f=(1-e) x \circ(x) f \in \operatorname{nil}\left(R_{0}[x]\right)$. Since $x-((x) f)^{(n)} \circ(x) g$ is idempotent, hence we have

$$
\begin{aligned}
& (x) f-(x) f \circ\left[((x) f)^{(n-1)} \circ(x) g\right] \circ(x) f \\
= & (x) f-((x) f)^{(n)} \circ(x) g \circ(x) f \\
= & (x) f-(x) f \circ((x) f)^{(n)} \circ(x) g \\
= & (x) f \circ\left[x-((x) f)^{(n)} \circ(x) g\right] \\
= & {\left[x-((x) f)^{(n)} \circ(x) g\right] \circ(x) f \in \operatorname{nil}\left(R_{0}[x]\right) }
\end{aligned}
$$

which implies that $(x) f+\operatorname{nil}\left(R_{0}[x]\right)=(x) f \circ\left[((x) f)^{(n-1)} \circ(x) g\right] \circ(x) f+$ $\operatorname{nil}\left(R_{0}[x]\right)$. Hence $(x) \bar{f}$ is regular.

Conversely, assume that

$$
(x) \bar{f}=(x) f+\operatorname{nil}\left(R_{0}[x]\right)
$$

is regular in $R_{0}[x] / \operatorname{nil}\left(R_{0}[x]\right)$, where $(x) f=\sum_{i=1}^{m} a_{i} x^{i}$. Then $(x) \bar{f}=(x) \bar{u} \circ$ $(x) \bar{c}$ for some $(x) \bar{u} \in U\left(R_{0}[x] / \operatorname{nil}\left(R_{0}[x]\right)\right)$ and $\bar{c} \in \operatorname{Idem}\left(R_{0}[x] / \operatorname{nil}\left(R_{0}[x]\right)\right)$ by Proposition 2.8. Since $R_{0}[x] / \operatorname{nil}\left(R_{0}[x]\right) \cong(R / \operatorname{nil}(R))_{0}[x]$, we have $(x) \bar{u} \in$ $U\left((R / \operatorname{nil}(R))_{0}[x]\right)$ and $(x) \bar{c} \in \operatorname{Idem}\left((R / \operatorname{nil}(R))_{0}[x]\right)$. Hence by Corollary 2.6, $(x) \bar{u}=\bar{v} x$ for some $\bar{v} \in U(R / \operatorname{nil}(R))$. Since $\operatorname{nil}(R) \subseteq J(R),(x) \bar{u}=\overline{v^{\prime}} x$ for some $v^{\prime} \in U(R)$. Furthermore, by Lemmas 2.3 and $3.4,(x) \bar{c}=\bar{e} x=(e+\operatorname{nil}(R)) x$ for some $e \in \operatorname{Idem}(R)$. Thus $(x) \bar{f}=\overline{v^{\prime}} x \circ \bar{e} x=\overline{v^{\prime}} \bar{e} x=\overline{v^{\prime} e} x$. Therefore $(x) \bar{f}=\sum_{i=1}^{m} \overline{a_{i}} x^{i}=\overline{v^{\prime} e} x$, which implies that $a_{1}-v^{\prime} e, a_{i} \in \operatorname{nil}(R)$ for each $i \geq 2$. Then $a_{1}=v^{\prime} e+b$ for some $b \in \operatorname{nil}(R)$. Hence $(x) w=b x+a_{2} x^{2}+\cdots+a_{m} x^{m} \in$ $\operatorname{nil}(R)_{0}[x]=\operatorname{nil}\left(R_{0}[x]\right)$ and a_{1} is π-regular by [1, Theorem 4.2]. Therefore $(x) f=v^{\prime} x \circ e x+(x) w$. By Theorem 2.5, $v^{\prime} x+(x) w \in U\left(R_{0}[x]\right)$, hence $e x \circ(x) f=e x \circ\left(e x \circ v^{\prime} x+(x) w\right)=e x \circ\left(v^{\prime} x+(x) w\right)$ is regular by Proposition 2.8. Further, $(1-e) x \circ(x) f=(x) f-(x) f \circ e x=\left(v^{\prime} x \circ e x+(x) w\right)-\left(v^{\prime} x \circ\right.$ $e x+(x) w) \circ e x=(x) w-e x \circ(x) w \in \operatorname{nil}\left(R_{0}[x]\right)$, since idempotents of $R_{0}[x]$
are central and $\operatorname{nil}\left(R_{0}[x]\right)$ is an ideal of $R_{0}[x]$. Therefore $(x) f$ is π-regular by Theorem 3.2.

From Theorem 3.5 we conclude that $R_{0}[x]$ is not π-regular. Now we give a characterization of π-regular elements of $R_{0}[x]$, when R is a commutative ring with $\operatorname{nil}(R)^{2}=0$.

Theorem 3.6. Let R be a commutative ring with $\operatorname{nil}(R)^{2}=0$ and $(x) f \in$ $R_{0}[x]$. Then the following statements are equivalent:
(1) $(x) f \in \pi-r\left(R_{0}[x]\right)$.
(2) $((x) f)^{(n)} \in \operatorname{vnr}\left(R_{0}[x]\right)$ for some $n \geq 1$.
(3) $((x) f)^{(n)}=(x) u \circ(x) h$ for some $(x) u \in U\left(R_{0}[x]\right)$ and $(x) h \in \operatorname{Idem}\left(R_{0}[x]\right)$.
(4) $(x) f=(x) g+(x) w$ for some $(x) g \in \operatorname{vnr}\left(R_{0}[x]\right)$ and $(x) w \in \operatorname{nil}\left(R_{0}[x]\right)$.
(5) $(x) f=(x) u \circ(x) h+(x) w$ for some $(x) u \in U\left(R_{0}[x]\right),(x) h \in \operatorname{Idem}\left(R_{0}[x]\right)$ and $(x) w \in \operatorname{nil}\left(R_{0}[x]\right)$.
(6) $(x) f+\operatorname{nil}\left(R_{0}[x]\right) \in \operatorname{vnr}\left(R_{0}[x] / \operatorname{nil}\left(R_{0}[x]\right)\right)$.

Proof. (1) \Leftrightarrow (2) It is clear.
$(2) \Leftrightarrow(3)$ and $(4) \Leftrightarrow$ (5) It follows from Proposition 2.8.
$(1) \Rightarrow(5)$ It follows from Theorem 3.5.
$(4) \Rightarrow(6)$ It is clear.
$(6) \Rightarrow(1)$ It follows from Theorem 3.5.
Corollary 3.7. Let R be a commutative ring with $\operatorname{nil}(R)^{2}=0$. Then we have:
(1) $\pi-r\left(R_{0}[x]\right)=\operatorname{vnr}\left(R_{0}[x]\right)+\operatorname{nil}\left(R_{0}[x]\right)$.
(2) $\pi-r\left(R_{0}[x]\right) / \operatorname{nil}\left(R_{0}[x]\right)=\operatorname{vnr}\left(R_{0}[x] / \operatorname{nil}\left(R_{0}[x]\right)\right)$.
(3) $\pi-r\left(R_{0}[x]\right)=\operatorname{vnr}\left(R_{0}[x]\right)$ if and only if R is reduced.
(4) If $2 \in U(R)$, then every $(x) f \in \pi-r\left(R_{0}[x]\right)$ is the sum of two units of $R_{0}[x]$.
Proof. (1) This follows from the equivalence of (1) and (4) in Theorem 3.6.
(2) This follows from the equivalence of (1) and (6) in Theorem 3.6.
(3) Since by Theorem 2.1, $\operatorname{nil}\left(R_{0}[x]\right) \cap \operatorname{vnr}\left(R_{0}[x]\right)=\{0\}$, the result follows from (1).
(4) $\operatorname{By}(1),(x) f=(x) g+(x) w$ with $(x) g \in \operatorname{vnr}\left(R_{0}[x]\right)$ and $(x) w \in \operatorname{nil}\left(R_{0}[x]\right)$. Then $(x) g=(x) u+(x) v$ for some $(x) u,(x) v \in U\left(R_{0}[x]\right)$ by Theorem 2.13. Thus $(x) u^{\prime}=(x) v+(x) w \in U\left(R_{0}[x]\right)$ by Theorem 2.5. Hence $(x) f=(x) u+(x) u^{\prime}$ is the sum of two units of $R_{0}[x]$.

Proposition 3.8. If R is a commutative ring with $\operatorname{nil}(R)^{2}=0$, then $\pi-$ $r\left(R_{0}[x]\right)$ is multiplicatively closed.

Proof. Let $(x) f_{1},(x) f_{2} \in \pi-r\left(R_{0}[x]\right)$. Thus $(x) f_{1}=u_{1} e_{1} x+(x) h_{1}$ and $(x) f_{2}=$ $u_{2} e_{2} x+(x) h_{2}$ for some $u_{1}, u_{2} \in U(R), e_{1}, e_{2} \in \operatorname{Idem}(R)$ and $(x) h_{1},(x) h_{2} \in$ $\operatorname{nil}\left(R_{0}[x]\right)$ by Corollary 3.7. Thus $(x) w_{1}=u_{2} e_{2}\left((x) h_{1}\right)$ and $(x) w_{2}=(x) f_{1} \circ$
$(x) h_{2}$ are nilpotent elements of $R_{0}[x]$, since $\operatorname{nil}\left(R_{0}[x]\right)$ is an ideal of $R_{0}[x]$. Hence

$$
\begin{aligned}
(x) f_{1} \circ(x) f_{2} & =\left(u_{1} e_{1} x+(x) h_{1}\right) \circ\left(u_{2} e_{2} x+(x) h_{2}\right) \\
& =\left(u_{1} e_{1} x+(x) h_{1}\right) \circ u_{2} e_{2} x+\left(u_{1} e_{1} x+(x) h_{1}\right) \circ(x) h_{2} \\
& =u_{2} e_{2}\left(u_{1} e_{1} x+(x) h_{1}\right)+(x) w_{2} \\
& =u_{2} e_{2} u_{1} e_{1} x+(x) w_{1}+(x) w_{2} .
\end{aligned}
$$

Then by [1, Theorem 2.1], $u_{2} e_{2} u_{1} e_{1} \in \operatorname{vnr}(R)$. Also, $(x) w_{1}+(x) w_{2} \in \operatorname{nil}\left(R_{0}[x]\right)$, since $\operatorname{nil}\left(R_{0}[x]\right)$ is an ideal of $R_{0}[x]$. Therefore $(x) f_{1} \circ(x) f_{2} \in \pi-r\left(R_{0}[x]\right)$ by Corollary 3.7.
Theorem 3.9. Let R be a commutative ring with $\operatorname{nil}(R)^{2}=0$. Then $\pi-$ $r\left(R_{0}[x]\right)=\operatorname{vnr}\left(R_{0}[x]\right) \cup \operatorname{nil}\left(R_{0}[x]\right)$ if and only if either $\operatorname{Idem}(R)=\{0,1\}$ or R is reduced.
Proof. Suppose that $\pi-r\left(R_{0}[x]\right)=\operatorname{vnr}\left(R_{0}[x]\right) \cup \operatorname{nil}\left(R_{0}[x]\right)$ and there exists $e \in \operatorname{Idem}(R) \backslash\{0,1\}$. Thus $\operatorname{Idem}\left(R_{0}[x]\right) \neq\{0, x\}$ by Lemma 2.3. Let $(x) f \in \operatorname{nil}\left(R_{0}[x]\right)$. Then $e x+(x) f \in \operatorname{vnr}\left(R_{0}[x]\right)+\operatorname{nil}\left(R_{0}[x]\right)=\pi-r\left(R_{0}[x]\right)=$ $\operatorname{vnr}\left(R_{0}[x]\right) \cup \operatorname{nil}\left(R_{0}[x]\right)$ by Corollary 3.7 and hypothesis. Thus ex $+(x) f \in$ $\operatorname{vnr}\left(R_{0}[x]\right)$, since $e \neq 0$. Hence by Theorem 2.1, $(x) f-e x \circ(x) f=(1-e) x \circ$ $(x) f=(1-e) x \circ(e x+(x) f) \in \operatorname{vnr}\left(R_{0}[x]\right)$, since idempotents of $R_{0}[x]$ are central. Also, $(x) f-e x \circ(x) f=(1-e) x \circ(x) f \in \operatorname{nil}\left(R_{0}[x]\right)$, since $\operatorname{nil}\left(R_{0}[x]\right)$ is an ideal of $R_{0}[x]$. Hence by Theorem 2.1, $(x) f-e x \circ(x) f=0$. By replacing $e x$ with $(1-e) x$, a similar argument yields that $e x \circ(x) f=0$, and so $(x) f=0$. Therefore $\operatorname{nil}(R)=\{0\}$ by [3, Proposition 3.1].

Conversely, if $\operatorname{Idem}(R)=\{0,1\}$, then $\operatorname{Idem}\left(R_{0}[x]\right)=\{0, x\}$ by Lemma 2.3. Hence by Theorem 2.1, $\operatorname{vnr}\left(R_{0}[x]\right)=U\left(R_{0}[x]\right) \cup\{0\}$. Thus $\pi-r\left(R_{0}[x]\right)=$ $U\left(R_{0}[x]\right)+\operatorname{nil}\left(R_{0}[x]\right)=U\left(R_{0}[x]\right)$ by Corollaries 2.6 and 3.7. Also, if $\operatorname{nil}(R)=$ $\{0\}$, then $\operatorname{nil}\left(R_{0}[x]\right)=\operatorname{nil}(R)_{0}[x]=\{0\}$. Therefore by Corollary 3.7, $\pi-$ $r\left(R_{0}[x]\right)=\operatorname{vnr}\left(R_{0}[x]\right)$. Hence $\pi-r\left(R_{0}[x]\right)=\operatorname{vnr}\left(R_{0}[x]\right) \cup \operatorname{nil}\left(R_{0}[x]\right)$.
Theorem 3.10. Let R be a commutative ring with nil $(R)^{2}=0$. Then
(1) $\operatorname{cln}\left(R_{0}[x]\right)=(\operatorname{cln}(R)) x+\left(\operatorname{nil}\left(R_{0}[x]\right)\right) x$

$$
=\left\{\sum_{i=1}^{n} a_{i} x^{i} \mid a_{1} \in \operatorname{cln}(R), a_{i} \in \operatorname{nil}(R) \text { for every } i \geq 2\right\} .
$$

(2) $R_{0}[x]$ is never a clean near-ring.

Proof. (1) By Theorem 2.5 and Lemma 2.3, we have $\operatorname{cln}\left(R_{0}[x]\right)=U\left(R_{0}[x]\right)+$ $\operatorname{Idem}\left(R_{0}[x]\right)=\left\{\sum_{i=1}^{n} a_{i} x^{i} \mid a_{1}=u+e\right.$ for some $u \in U(R), e \in \operatorname{Idem}(R)$ and $a_{i} \in \operatorname{nil}(R)$ for every $\left.i \geq 2\right\}=\left\{\sum_{i=1}^{n} a_{i} x^{i} \mid a_{1} \in \operatorname{cln}(R), a_{i} \in \operatorname{nil}(R)\right.$ for every $i \geq 2\}$.
(2) It follows from (1), since $x^{2} \notin \operatorname{cln}\left(R_{0}[x]\right)$.

References

[1] D. F. Anderson and A. Badawi, Von Neumann regular and related elements in commutative rings, Algebra Colloq. 19 (2012), Special Issue no. 1, 1017-1040.
[2] J. C. Beidleman, A note on regular near-rings, J. Indian Math. Soc. (N.S.) 33 (1969), 207-209 (1970).
[3] G. F. Birkenmeier and F. Huang, Annihilator conditions on polynomials, Comm. Algebra 29 (2001), no. 5, 2097-2112.
[4] D. Z. T. Chao, A radical of unitary near-rings, Tamkang J. Math. 6 (1975), no. 2, 293-299.
[5] Y. U. Cho, Some results on monogenic (R, S)-groups, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 18 (2011), no. 4, 305-312.
[6] E. Hashemi, On nilpotent elements in a nearring of polynomials, Math. Commun. 17 (2012), no. 1, 257-264.
[7] E. Hashemi and A. A. Estaji, On polynomials over abelian rings, Vietnam J. Math. 40 (2012), no. 1, 47-55.
[8] T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.
[9] C. J. Maxson, On local near-rings, Math. Z. 106 (1968), 197-205.
[10] W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278.
[11] G. Pilz, Near-Rings, second edition, North-Holland Mathematics Studies, 23, NorthHolland Publishing Co., Amsterdam, 1983.

Ebrahim Hashemi
Faculty of Mathematical Sciences
Shahrood University of Technology
P.O.Box: 316-3619995161, Shahrood, Iran

Email address: eb_hashemi@yahoo.com or eb_hashemi@shahroodut.ac.ir
Fatemeh Shokuhifar
Faculty of Mathematical Sciences
Shahrood University of Technology
P.O.Box: 316-3619995161, Shahrood, Iran

Email address: shokuhi.135@gmail.com

[^0]: Received February 24, 2018; Revised July 1, 2018; Accepted July 16, 2018.
 2010 Mathematics Subject Classification. Primary 16Y30, 16U99, 16U60.
 Key words and phrases. near-ring of polynomials, regular elements, unit elements, π regular elements, clean elements.

