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Q-MEASURES ON THE DUAL UNIT BALL OF A

JB∗-TRIPLE

C. Martin Edwards and Lina Oliveira

Abstract. Let A be a JB∗-triple with Banach dual space A∗ and bi-dual

the JBW∗-triple A∗∗. Elements x of A∗ of norm one may be regarded as
normalised ‘Q-measures’ defined on the complete ortho-lattice Ũ(A∗∗) of

tripotents in A∗∗. A Q-measure x possesses a support e(x) in Ũ(A∗∗) and

a compact support ec(x) in the complete atomic lattice Ũc(A) of elements

of Ũ(A∗∗) compact relative to A. Necessary and sufficient conditions for

an element v of Ũc(A) to be a compact support tripotent ec(x) are given,

one of which is related to the Q-covering numbers of v by families of

elements of Ũc(A).

1. Introduction

A complex Banach space A with the open unit ball in which is a bounded
symmetric domain automatically possesses a unique triple product (a, b, c) 7→
{a b c} with respect to which A is a JB∗-triple, and every JB∗-triple arises in this
manner. Examples of JB∗-triples are C∗-algebras, JB∗-algebras, the Cartan
factor B(H,K) of bounded linear operators from a complex Hilbert space H
to a complex Hilbert space K, spin triples, and the exceptional Cartan factors
H3(O) and M1,2(O) of hermitian 3 × 3 matrices and 1 × 2 matrices over the
complex octonions O.

A JB∗-triple B that is the dual of a Banach space B∗ is known as a JBW∗-
triple in which case B∗ is unique up to isometric isomorphism and is therefore
said to be the pre-dual of B. The bi-dual A∗∗ of a JB∗-triple A is a JBW∗-triple
with unique pre-dual A∗.

In part, because they provide a link between complex function theory and
topological algebra, JB∗-triples have been the subject of much investigation
over many years. However, their influence has also been substantial because
of the connections between the algebraic properties of a JB∗-triple A and its
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bi-dual JBW∗-triple A∗∗ and the geometric properties of the unit balls in A,
A∗, and A∗∗.

Briefly, using terms that will be defined precisely in Sections §2-3, these
arise in the following manner. Let Ũ(A∗∗) be the complete ortho-lattice of

tripotents in A∗∗ and let Ũc(A) be the complete atomic lattice of elements of

Ũ(A∗∗) compact relative to A. Elements x of A∗ of norm one will be referred to

as Q-measures on Ũ(A∗∗), the support of such a Q-measure x being an element

e(x) of Ũ(A∗∗) and the compact support of which is an element ec(x) of Ũc(A).

The main results provide conditions under which an element v of Ũc(A) is
the compact support ec(x) of a Q-measure x. Whilst the geometric aspect of
this problem was discussed in [18], the condition at the centre of this paper

relates to the properties of Q-coverings of v by families of elements of Ũ(A∗∗).
Incidentally, this result also relates to the question of when a unital C∗-algebra
possesses a faithful state.

The motivation for the continuing efforts to investigate the properties of
JB∗-triples not only comes from their central rôle in complex holomorphy, al-
gebra, and geometry, but it is also the case that the pre-dual Banach spaces of
JBW∗-triples, and, consequently, the dual Banach spaces of JB∗-triples, have
been proposed as models of state spaces of statistical physical systems. As
a consequence, the results obtained in this paper and its many precursors all
have physical interpretations. It should be added that these JB∗-triple mod-
els include as sub-models the usual JBW∗-algebra models for quantum theory.
The interested reader is referred to [16,17,30–33].

The paper is organised as follows. The second section contains a miscella-
neous collection of definitions and general information that is needed in order
to provide a setting in which the main results can be investigated. The setting
itself is described in §3 and the main results are given in §4. The final section is
used to illustrate the results by examining in some detail the example in which
the JB∗-triple A is the unital commutative C∗-algebra of all complex-valued
continuous functions on a compact Hausdorff space. Much of what appears
in §5 can be extracted from [11], to the authors of which a debt of gratitude
is owed for providing the authors of this paper with an early sighting of their
interesting piece of work.

2. Preliminaries

In this section some, but not all, definitions and properties of those mathe-
matical structures that will be used throughout the paper, are presented, along
with references to more detailed accounts and some new approaches.

2.1. Recall that a partially ordered set P is said to be a lattice if, for each pair
u and v in P, the supremum u ∨ v and the infimum u ∧ v exist with respect
to the partial ordering. The partially ordered set P is said to be a complete
lattice if, for any subset {vj : j ∈ Λ} of P, the supremum ∨j∈Λvj and the
infimum ∧j∈Λvj exist. A complete lattice possesses a greatest element ω and
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a least element 0. A subset Q of a lattice P is said to be a sub-lattice if, for all
elements u and v in Q, both u∨ v and u∧ v lie in Q. If P is a complete lattice
and Q is a sublattice of P for which the supremum and infimum of arbitrary
families of elements of Q lie in Q, then Q is said to be a sub-complete lattice
of P. A sub-lattice Q of the lattice P is said to be an order ideal in P if, for
elements u in Q and v in P with v ≤ u, then v also lies in Q, and is said to
be an anti-order ideal in P if, for elements u in Q and v in P with u ≤ v, then
v also lies Q. A complete lattice P is said to be atomic if, for each element u
in P, there exists a non-zero minimal element e such that e ≤ u. A complete
lattice P along with an anti-order automorphism u 7→ u⊥ on P such that, for
all elements u and v in P,

u ∨ u⊥ = 1, u⊥⊥ = u,

and if u ≤ v, then

v = u ∨ (v ∧ u⊥),

is said to be orthomodular.

2.2. Let V be a complex (or real) vector space and let C be a convex subset of
V . A convex subset F of C is said to be a face of C provided that, if x1 and x2

lie in C and for some real number t in the open unit interval (0, 1) the element
tx1 + (1− t)x2 lies in F , then x1 and x2 lie in F . A one-point face {x} of C is
said to be an extreme point of C. Let τ be a locally convex Hausdorff topology
on V , let C be a τ -closed convex subset of V , and let Fτ (C) denote the set of
all τ -closed faces of C. Both ∅ and C lie in Fτ (C) and the intersection of an
arbitrary family of elements of Fτ (C) also lies in Fτ (C). When the infimum
of an arbitrary family {Fj : j ∈ Λ} of elements of Fτ (C) is defined by their
intersection and the supremum is defined by

∨j∈ΛFj = ∧{F ∈ Fτ (C) : Fj ⊆ F, ∀j ∈ Λ},
the set Fτ (C) forms a complete lattice. A subset E of C is said to be a τ -
exposed face of C if there exist a τ -continuous complex linear functional a on
V and a real number λ such that, for all elements x in E, the real part Re a(x)
of a(x) is equal to λ and, for all elements x in C \ E,

Re a(x) < λ.

Let Eτ (C) denote the family of τ -exposed faces of C and observe that the
intersection of a finite number of elements of Eτ (C) also lies in Eτ (C), that ∅
and C lie in Eτ (C), and that Eτ (C) is contained in Fτ (C). The intersection of
an arbitrary family of elements of Eτ (C) is said to be a τ -semi-exposed face of
C. The intersection of a family of elements of the set Sτ (C) of τ -semi-exposed
faces of C also lies in Sτ (C). Therefore, with respect to the ordering by set
inclusion, Sτ (C) forms a complete lattice the infimum of a family of elements
of Sτ (C) coinciding with its infimum in Fτ (C).

2.3. Let A be a complex, or real, Banach space with dual space A∗ and bi-dual
space A∗∗, with closed unit balls A1, A∗1, and A∗∗1 , respectively. For each subset
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F of A1 and G of A∗1, let

F ′ = {x ∈ A∗1 : x(a) = 1,∀a ∈ F}, G′ = {a ∈ A1 : x(a) = 1,∀x ∈ G}.

Then, F lies in Sσ(A,A∗)(A1) if and only if F coincides with (F ′)′ and G lies
in Sσ(A∗,A)(A

∗
1) if and only if G coincides with (G′)

′ and the mappings F 7→
F ′ and G 7→ G′ are anti-order isomorphisms between the complete lattices
Sσ(A,A∗)(A1) and Sσ(A∗,A)(A

∗
1) and are inverses of each other. Similarly, for

subsets G of A∗1 and H of A∗∗1 , let

G′ = {a ∈ A∗∗1 : x(a) = 1,∀x ∈ G}, H′ = {x ∈ A∗1 : x(a) = 1,∀a ∈ H}.

Then, G lies in Sσ(A∗,A∗∗)(A
∗
1) if and only if G coincides with (G′)′ and H

lies in Sσ(A∗∗,A∗)(A
∗∗
1 ) if and only if H coincides with (H ′)′, and, as before,

the mappings G 7→ G′ and H 7→ H′ are anti-order isomorphisms between the
complete lattices Sσ(A∗,A∗∗)(A

∗
1) and Sσ(A∗∗,A∗)(A

∗∗
1 ) and are inverses of each

other. For details, the reader is referred to [19,21].

2.4. Observe that the complete lattice Sσ(A∗,A∗∗)(A
∗
1) contains the complete

lattice Sσ(A∗,A)(A
∗
1) and the infimum of a family of elements of the complete

lattice Sσ(A∗,A)(A
∗
1) coincides with its infimum taken in Sσ(A∗,A∗∗)(A

∗
1). For

each element G of Sσ(A∗,A∗∗)(A
∗
1), let Gc be the element of Sσ(A∗,A)(A

∗
1) defined

by

(1) Gc = (G′)
′.

Then, Gc is said to be the Q-closure of G. Notice that

(2) Gc = ∧{G1∈Sσ(A∗,A)(A
∗
1):G≤G1}G1 = ∩{G1∈Sσ(A∗,A)(A

∗
1):G⊆G1}G1.

An element G of Sσ(A∗,A∗∗)(A
∗
1) is said to be Q-dense in an element K of

Sσ(A∗,A)(A
∗
1) when Gc coincides with K.

2.5. For each element x of norm one inA∗1 the element ({x}′)′ of Sσ(A∗,A∗∗)(A
∗
1)

is said to be the support E(x) of x and the element ({x}′)′ of Sσ(A∗,A)(A
∗
1) is said

to be the compact support Ec(x) of x. Notice that E(x) is contained in Ec(x)
and that it is not possible that E(x) coincides with A∗1 which would imply that
the weak∗-continuous complex-valued function x on the weak∗-compact unit
ball A∗∗1 in A∗∗ had a non-compact range. On the other hand it is possible
that Ec(x) coincides with A∗1.

2.6. Elements x and y of A∗ are said to be L-orthogonal, denoted by x♦y, if

‖x± y‖ = ‖x‖+ ‖y‖,

and elements a and b in A∗∗ are said to be M-orthogonal, denoted by a� b, if

‖a± b‖ = max{‖a‖, ‖b‖}.

If a and b are of unit norm and M-orthogonal, then the elements {a}′ and {b}′ of
Sσ(A∗,A∗∗)(A

∗
1) form L-orthogonal sets. Let x and y be elements of A∗ of norm

one and let E(x) and E(y) be the corresponding elements of Sσ(A∗,A∗∗)(A
∗
1).

Then x and y form an L-orthogonal pair if and only if E(x) and E(y) form
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an L-orthogonal pair. For details of these and other results of this nature the
reader is referred to [25].

2.7. A Jordan∗-algebra B which is also a complex Banach space such that,
for all elements a and b in B,

‖a∗‖ = ‖a‖, ‖a ◦ b‖ ≤ ‖a‖ ‖b‖

and

‖{a a a}‖ = ‖a‖3,
where

(3) {a b c} = a ◦ (b∗ ◦ c) + c ◦ (b∗ ◦ a)− b∗ ◦ (a ◦ c)

is the Jordan triple product on B, is said to be a Jordan C ∗-algebra [52] or
JB ∗-algebra [53]. A Jordan C∗-algebra which is the dual of a Banach space
is said to be a Jordan W ∗-algebra [14], or a JBW ∗-algebra [53]. Examples of
JB∗-algebras are C∗-algebras and examples of JBW∗-algebras are W∗-algebras
in both cases equipped with the Jordan product

a ◦ b = 1
2 (ab+ ba).

The self-adjoint parts of JB∗-algebras and JBW∗-algebras are said to be JB-
algebras and JBW-algebras, respectively. The bidual A∗∗ of a JB∗-algebra A
forms a JBW∗-algebra, the bidual (Asa)∗∗ of the JB-algebra Asa coinciding
with the JBW-algebra A∗∗sa . The set of elements {a ◦ a : a ∈ Asa} in the self-
adjoint part Asa of the JB∗-algebra A forms a norm-closed generating cone A+

for Asa. In the case in which B is a JBW∗-algebra, B+ is σ(B,B∗)-closed.
Every JBW∗-algebra B possesses a unit element which is an extreme point of
the unit ball in B. For the relevant properties of C∗-algebras and W∗-algebras
the reader is referred to [2, 26, 45, 46, 49] and for properties of Jordan algebras
to [4, 5, 35,38,41–44,47].

The set P(B) of self-adjoint idempotents, the projections, in a JBW∗-algebra
B forms a complete orthomodular lattice with respect to the partial ordering
defined, for elements p and q in P(A), by p ≤ q if

p ◦ q = p

and the mapping p 7→ p⊥ defined by

p⊥ = u− p,

where u is the unit in B. The ordering of P(B) coincides with the restriction
to P(B) of the ordering of Bsa defined by B+.

2.8. A complex Banach space A that possesses a triple product (a, b, c) 7→
{a b c} from A×A×A to A that is symmetric and linear in the first and third
variables, conjugate linear in the second variable, and, for elements a, b, c and
d in A, satisfies the identity

[D(a, b), D(c, d)] = D({a b c}, d)−D(c, {d a b}),
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where [ , ] denotes the commutator, and D and Q are the mappings from A×A
to the sets of linear and conjugate linear operators on A, respectively, defined
by

D(a, b)c = {a b c} = Q(a, c)b,

D is norm-continuous from A × A to the Banach algebra of bounded linear
operators on A, and, for each element a in A, D(a, a) is hermitian in the sense
of [10], Definition 5.1, with non-negative spectrum, such that

‖D(a, a)‖ = ‖a‖2,
is said to be a JB ∗-triple. A complex Banach space possesses a triple product
with respect to which it is a JB∗-triple if and only if its open unit ball is a
bounded symmetric domain, in which case the triple product is unique. A
norm-closed subtriple J of a JB∗-triple A is itself a JB∗-triple and J is said to
be a norm-closed inner ideal if the set {J AJ} is contained in J . A JB∗-triple B
that is the dual of a Banach space B∗ is said to be a JBW ∗-triple. In this case
the predual B∗ of B is unique up to isometric isomorphism and, for elements
a and b in B, the operators D(a, b) and Q(a, c) are σ(B,B∗)-continuous. The
elements a and b of the JB∗-triple B are said to be orthogonal when D(a, b) is
equal to zero. Observe that a pair a and b of elements of B are orthogonal if
and only if they are M-orthogonal. In this case D(b, a) is also equal to zero.
Examples of JB∗-triples are JB∗-algebras and examples of JBW∗-triples are
JBW∗-algebras. The bidual A∗∗ of a JB∗-triple A is a JBW∗-triple. For details
of these results the reader is referred to [7, 8, 12,13,34,37,39–41,50,51].

2.9. An element u in a JBW∗-triple B is said to be a tripotent if {uuu} is
equal to u. The set of tripotents in B is denoted by U(B). For each tripotent
u in the JBW∗-triple B and, for j equal to 0, 1, or 2, the σ(B,B∗)-continuous
linear operators, Pj(u), are defined by

P2(u) = Q(u, u)2,

P1(u) = 2(D(u, u)−Q(u, u)2), P0(u) = idB − 2D(u, u) +Q(u, u)2.

The results of [7, 8] show that the linear operators Pj(u), are σ(B,B∗)-conti-
nuous contractive projections onto the eigenspaces Bj(u) ofD(u, u) correspond-
ing to eigenvalues j/2. The corresponding decomposition

B = B0(u)⊕B1(u)⊕B2(u)

is said to be the Peirce decomposition of B relative to u. For j, k, l equal to 0,
1, or 2, Bj(u) is a sub-JBW∗-triple such that

{Bj(u)Bk(u)Bl(u)} ⊆ Bj−k+l(u)

when j − k + l is equal to 0, 1, or 2, and is equal to {0} otherwise. Moreover,

{B2(u)B0(u)B} = {B0(u)B2(u)B} = {0}.
With respect to the product (a, b) 7→ a ◦u b and involution a 7→ a†u defined by

a ◦u b = {a u b}, a†u = {u au},



Q-MEASURES ON THE DUAL UNIT BALL 203

B2(u) is a JBW∗-algebra with unit u, the Jordan algebra triple product (3) in
which coincides with the restriction of that in B to B2(u).

2.10. Recall that a GL-space (complete base norm space) W is a real Ba-
nach space partially ordered by a norm-closed cone W+ such that the norm
is additive on W+ and the unit ball W1 in W coincides with the convex hull
conv((W+ ∩W1) ∪ (−W+ ∩W1)) of the set (W+ ∩W1) ∪ (−W+ ∩W1). Then,
the set K of elements of W+ of norm one forms a base for W+ such that W1

coincides with conv(K∪(−K)). A unital GM-space (complete order unit space)
V is a real Banach space partially-ordered by a norm-closed cone V+ such that
the open unit ball in V is upward filtering and possesses a maximal element u
in which case the unit ball V1 coincides with the order interval

[−u, u] = (−u+ V+) ∩ (u− V+).

The Banach dual space W ∗ of the GL-space W above endowed with the or-
dering defined by the dual cone W ∗+ and unit u defined as the element of W ∗+
that takes the value one on the set K, is a unital GM-space. A JBW-algebra B
with unit u and positive cone B+, defined as in §2.7, forms a unital GM-space,
its unique pre-dual B∗ being a GL-space, the base K of its positive cone being
described as the normal state space of B. For properties of GL-spaces and
GM-spaces the reader is referred to [3, 6, 19,20].

3. The setting

The previous section mainly contained material of a general nature that will
be needed in the description of the subject of main interest of this paper. Some
of the approaches that it takes may be of more general interest. This section
provides the setting in which the properties of JB∗-triples investigated in this
paper can be described.

Let A be a JB∗-triple with dual A∗ and bi-dual JBW∗-triple A∗∗, and let
U(A∗∗) be the set of tripotents in A∗∗. For elements u and v of U(A∗∗), write
u ≤ v when

{u v u} = u.

This defines a partial ordering of the set U(A∗∗) which has a least element
zero. Observe that the following conditions on elements u and v of U(A∗∗) are
equivalent:

{uu v} = 0; u ⊥ v; u� v = 0,

and the relation is symmetric. Moreover, for elements u and v of U(A∗∗), v ⊥ v
if and only if v is equal to zero, if u ⊥ v, then u ∨ v exists and is equal u+ v,
if u ≤ v there exists uniquely w in U(A∗∗) such that w ⊥ u and u ∨ w is equal
to v, and if u, v, and w lie in U(A∗∗) and are such that u ≤ v and v ⊥ w, then
u ⊥ w. For details the reader is referred to [9, 22–24].

Let a be an element of A∗∗ of norm one and let (a2n−1) be the sequence of
elements of A∗∗ defined inductively, for n = 1, 2, . . . by

a2n+1 = {a a2n−1 a}.
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Then the sequence (a2n+1) converges in the σ(A∗∗, A∗)-topology to an element
u(a) in U(A∗∗). An element u of U(A∗∗) is said to be compact relative to A if,
either, u is equal to zero or there exists a family (aj)j∈Λ of elements of A1 of
norm one such that the set (u(aj))j∈Λ of elements of U(A∗∗) is a decreasing net
converging in the σ(A∗∗, A∗)-topology to its infimum u. Let Uc(A) denote the
partially ordered subset of elements of U(A∗∗) that are compact relative to A.

Let Ũ(A∗∗) and Ũc(A) respectively denote the sets U(A∗∗)∪{ω} and Uc(A)∪{ω}
with partial ordering extended from U(A∗∗) by defining ω to be the largest

element. The properties of Ũ(A∗∗) and Ũc(A) and their relationship to the
facial structure of A∗1 are listed below. The reader is referred to [15,22,23,25,29]
for details.

Theorem 3.1. Let A be a JB∗-triple with dual A∗ and bidual JBW∗-triple
A∗∗, and let A1, A∗1, and A∗∗1 be the unit balls in A, A∗, and A∗∗, respectively.
Then, the following results hold.

(i) (a) The complete lattices Fσ(A∗,A∗∗)(A
∗
1) of σ(A∗, A∗∗)-closed faces of

A∗1 and Sσ(A∗,A∗∗)(A
∗
1) of σ(A∗, A∗∗)-semi-exposed faces of A∗1 co-

incide.
(b) The partially ordered set Ũ(A∗∗) is a complete lattice and the map-

ping u 7→ {u}′, where {ω}′ is equal to A∗1, is an order isomorphism

from Ũ(A∗∗) onto the complete lattice Fσ(A∗,A∗∗)(A
∗
1) such that,

for elements u and v in Ũ(A∗∗), u ⊥ v if and only if {u}′♦{v}′.
(ii) (a) The complete lattices Fσ(A∗∗,A∗)(A

∗∗
1 ) of σ(A∗∗, A∗)-closed faces

of A∗∗1 and Sσ(A∗∗,A∗)(A
∗∗
1 ) of σ(A∗∗, A∗)-semi-exposed faces of

A∗∗1 coincide.
(b) The mapping u 7→ ({u}′)′ is an anti-order isomorphism from the

complete lattice Ũ(A∗∗) onto the complete lattice Fσ(A∗∗,A∗)(A
∗∗
1 ).

(iii) (a) The complete lattices Fσ(A∗,A)(A
∗
1) of σ(A∗, A)-closed faces of A∗1

and Sσ(A∗,A)(A
∗
1) of σ(A∗, A)-semi-exposed faces of A∗1 coincide.

(b) The partially ordered set Ũc(A) is a complete lattice and the map-
ping u 7→ {u}′, where {ω}′ is equal to A∗1, is an order isomor-

phism from the complete lattice Ũc(A) onto the complete lattice
Fσ(A∗,A)(A

∗
1).

(iv) (a) The complete lattices Fσ(A,A∗)(A1) of σ(A,A∗)-closed faces of A1

and Sσ(A,A∗)(A1) of σ(A,A∗)-semi-exposed faces of A1 coincide.
(b) The mapping u 7→ ({u}′)′ is an anti-order isomorphism from the

complete lattice Ũc(A) onto the complete lattice Fσ(A,A∗)(A1).

As a consequence of Theorem 3.1(i)(b), Ũ(A∗∗) will be referred to as the
complete ortho-lattice of tripotents in A∗∗. It should also be said that the
results of Theorem 3.1(i)-(ii) hold when A∗∗ is replaced by any JBW∗-triple
B and A∗ by the unique pre-dual B∗ of B. The same remark applies to the
following result, the proof of which can be found in [24].

Corollary 3.2. Under the conditions of Theorem 3.1 the following results hold.
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(i) For an increasing net (vj)j∈Λ in U(A∗∗), ∨j∈Λvj lies in U(A∗∗) and if
u is an element of U(A∗∗) such that, for all elements j in Λ, u ⊥ vj,
then u ⊥ ∨j∈Λvj.

(ii) Let (vj)j∈Λ be an orthogonal family in U(A∗∗), let Λf be the set of finite
subsets of Λ, upward-directed by set inclusion, and for γ in Λf , let

vγ = Σj∈γvj .

Then, ∨j∈Λvj exists in U(A∗∗) and is equal to the σ(A∗∗, A∗)-limit of
the σ(A∗∗, A∗)-convergent increasing net (vγ)γ∈Λf .

(iii) For an element u in U(A∗∗) the principal order ideal Iu of elements v

in Ũ(A∗∗) such that v ≤ u coincides with the complete ortho-lattice of
self-adjoint idempotents in the JBW ∗-algebra A∗∗2 (u).

A further consequence of Theorem 3.1 is that the results of §2.4-2.5 may be
related to the properties of Ũ(A∗∗). For each element w of Ũ(A∗∗), let wc be

the unique element of Ũc(A) such that

(4) {wc}′ = (({w}′)′)′.

Then, wc is said to be the Q-closure of w. An element w of Ũ(A∗∗) is said to

be Q-dense in an element v of Ũc(A) if wc coincides with v.
A further consequence of Theorem 3.1, using §2.5, is that, for each element

x of A∗1 of norm one, there exist a unique element e(x) of Ũ(A∗∗), known as
the support of x, such that

(5) ({x}′)′ = E(x) = {e(x)}′,

and a unique element ec(x) of Ũc(A), known as the compact support of x, such
that

(6) ({x}′)′ = Ec(x) = {ec(x)}′.
It follows from §2.4-2.5 that, for any element x of A∗1 of norm one, e(x)c co-
incides with ec(x) and, whilst it is possible that ec(x) is equal to the largest

element ω in Ũ(A∗∗) the same does not hold for e(x).

Since, for each element u of Ũc(A) that is not equal to ω or zero, {u}′ is
a proper, non-empty σ(A∗, A)-closed face of A∗1, the Krein-Milman Theorem
shows that {u}′ contains an extreme point x in which case,

{x} = E(x) = Ec(x) = {e(x)}′ = {ec(x)}′ ⊆ {u}′.

It follows that the complete lattices Ũc(A) and Fσ(A∗,A)(A
∗
1) are atomic. Con-

sequently, Ũc(A) will be referred to as the complete atomic lattice of compact
tripotents in A∗∗. It should be remembered that although it is the case that
the infimum of a family of elements of Ũc(A) when taken in Ũc(A) coincides

with that taken in the complete lattice Ũ(A∗∗) the same does not, in general,
hold for the supremum.

Observe that, from §2.6, a family (xj)j∈Λ of elements of norm one in A∗1 is L-
orthogonal if and only the family (E(xj))j∈Λ is L-orthogonal in Fσ(A∗,A∗∗)(A

∗
1)
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if and only if the family (e(xj))j∈Λ is orthogonal in Ũ(A∗∗). An element u of

Ũ(A∗∗) is said to be σ-finite if it does not majorize an uncountable orthogonal

subset of Ũ(A∗∗). It follows from Theorem 3.1 that, similarly, a σ(A∗, A∗∗)-
closed face G of A∗1 may be said to be σ-finite if it does not contain an un-
countable family of L-orthogonal σ(A∗, A∗∗)-closed faces of A∗1. The following
corollary of Theorem 3.1 the proof of which can be found in [24] gives two
important properties of orthogonal subsets.

Corollary 3.3. Under the conditions of Theorem 3.1, the following results
hold.

(i) An element u in Ũ(A∗∗) is σ-finite if and only if there exists an element
x in A∗1 such that u coincides with the support tripotent e(x) of x.

(ii) For each element u of U(A∗∗) there exists a maximal L-orthogonal sub-
set {zj : j ∈ Λ} of {u}′ such that u coincides with ∨j∈Λe(zj).

4. Main results

Many papers have been written about the properties of a JB∗-triple A in
some of which an important part is played by the Q-topology discussed above,
the classical example of which is the compact Hausdorff topology of the pure
state space of a commutative unital C∗-algebra. In this paper some answers are
given to the question of, when studying the Q-structure related to a JB∗-triple
A, under what conditions is it the case that a particular Q-closed element v is
the compact support ec(x) of a Q-measure x. Using Theorem 3.1, the question
may be interpreted as one about σ(A∗, A)-closed faces of A∗1 or about compact
tripotents in A∗∗. The results depend upon the analogue of ‘covering numbers’
of families of elements. The connection between this study and the classical
problem is described in the final section of the paper.

The first result is concerned with principal order ideals defined by compact
tripotents in the spirit of Corollary 3.2(iii).

Lemma 4.1. Let A be a JB ∗-triple, with dual Banach space A∗ and bidual
JBW ∗-triple A∗∗, and let u be an element of the complete atomic lattice Ũc(A)
of compact tripotents in A∗∗. Then, the set

(7) Cu = {v ∈ Ũc(A) : 0 ≤ v ≤ u}

is a principal order ideal in the complete atomic lattice Ũc(A) and the map-
ping v 7→ {v}′ is an order isomorphism from Cu onto the complete atomic
lattice Fσ(A∗,A)({u}′) of σ(A∗, A)-closed faces of the σ(A∗, A)-compact convex
set {u}′.

Proof. Observe that when u is equal to ω then Cu coincides with Ũc(A) and
the result is tautological. When u is not equal to ω then, by Corollary 3.2(iii),
{u}′ can be identified with the normal state space of the JBW∗-algebra A∗∗2 (u)
or the JBW-algebra A∗∗2 (u)sa. Using §2.10, it follows that the convex hull
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conv({u}′∪{−u}′) is the unit ball in the unique predual A∗∗2 (u)∗,sa of the JBW-
algebra A∗∗2 (u)sa. Since u is compact, by Theorem 3.1(iii)(b), {u}′ is σ(A∗, A)-
closed and, therefore, the unit ball in A∗∗2 (u)∗,sa is σ(A∗, A)-compact. The
Krein-Smulian theorem ensures that A∗∗2 (u)∗,sa is σ(A∗, A)-closed in A∗ and
that the σ(A∗, A)-compact convex set {u}′ is regularly embedded in A∗∗2 (u)∗,sa.
It follows from [3], Propositions II.2-II.2.4, that the σ(A∗, A)-compact convex
set {u}′ can be identified, up to affine homeomorphism, with the state space of
the unital GM-space of σ(A∗, A)-continuous real affine functions on {u}′. The
proof is then completed by [18], Theorem 3.1(ii) and Corollary 3.2(i). �

The second result and its proof may be found in [28], Theorem 3.9.

Lemma 4.2. Let A be a JB ∗-triple, with dual Banach space A∗ and bidual
JBW ∗-triple A∗∗, and let {vj : j = 1, 2, . . . , n} be a family of pairwise orthogo-

nal elements of the complete atomic lattice Ũc(A) of compact tripotents in A∗∗.

Then, Σnj=1vj is an element of Ũc(A).

The next result summarises the properties of the Q-topology of the unit ball
A∗1 in A∗ the proof of most of which follows immediately from Theorem 3.1
and (4)-(6).

Lemma 4.3. Let A be a JB ∗-triple with dual Banach space A∗ and bidual
JBW ∗-triple A∗∗, let Ũ(A∗∗) be the complete ortho-lattice of tripotents in A∗∗,

and let Ũc(A) be the complete atomic lattice of compact tripotents in A∗∗. Then,
the following results hold.

(i) For each element w in Ũ(A∗∗), there exists uniquely a smallest element

wc in Ũc(A) such that
w ≤ wc

given by
wc = ∧{v∈Ũc(A):w≤v}v,

for which
({wc}′)′ = ({w}′)′.

(ii) The mapping w 7→ wc has the following properties:
(a) 0c = 0, ωc = ω;

(b) an element w of Ũ(A∗∗) lies in Ũc(A) if and only if w and wc

coincide;
(c) for each family {wj : j ∈ Λ} of elements of Ũ(A∗∗),

(∨j∈Λwj)
c = (∨j∈Λw

c
j)

c.

(iii) For each element x in A∗ of norm one, let e(x) and ec(x) be the ele-

ments of Ũ(A∗∗) and Ũc(A) defined by

{e(x)}′ = ({x}′)′ = E(x), {ec(x)}′ = ({x}′)′ = Ec(x),

respectively. Then
e(x)c = ec(x).
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Proof. The proofs of (i), (ii)(a)-(ii)(b), and (iii) follow immediately from The-
orem 3.1 using §2.3-2.5. In order to prove (ii)(c), notice that (∨j∈Λwj)

c exists
and may be equal to ω in which case the result holds by (ii)(a). If (∨j∈Λwj)

c

is not equal to ω, then observe that, for each element k in Λ,

wk ≤ ∨j∈Λwj

and, hence,

wc
k ≤ (∨j∈Λwj)

c.

Therefore,

∨k∈Λw
c
k ≤ (∨j∈Λwj)

c,

and, hence,

(8) (∨k∈Λw
c
k)c ≤ (∨j∈Λwj)

c.

On the other hand, it is clear that

∨j∈Λwj ≤ (∨k∈Λw
c
k)c

and, hence, that

(9) (∨j∈Λwj)
c ≤ (∨k∈Λw

c
k)c.

The proof is completed by (8)-(9). �

As pointed out in §3, for each element w in Ũ(A∗∗) the element wc of Ũc(A)
described in Lemma 4.3 is said to be the Q-closure of w. An element w in
Ũ(A∗∗) is said to be Q-dense in an element v of Ũc(A) if wc coincides with
v. Observe that, by Lemma 4.3(ii)(c), the supremum of an arbitrary family of

elements of Ũ(A∗∗) each of which is Q-dense in v is also Q-dense in v and, since
v is Q-dense in itself, the set of elements that are Q-dense in v is non-empty.

The next result connects the Q-topological concepts described above with
the properties of L-orthogonal sets on the surface of the unit ball A∗1 in the
dual space A∗ of the JB∗-triple A that were introduced in Corollary 3.3.

Lemma 4.4. Let A be a JB ∗-triple with dual Banach space A∗ and bidual
JBW ∗-triple A∗∗, let Ũ(A∗∗) be the complete ortho-lattice of tripotents in A∗∗,

and let Ũc(A) be the complete atomic lattice of compact tripotents in A∗∗. Then,
the following results hold.

(i) Let w be an element of U(A∗∗) and let {zj : j ∈ Λ} be a maximal L-
orthogonal subset of {w}′ such that w coincides with ∨j∈Λe(zj). Then,
the Q-closure wc of w is given by

(10) wc = (∨j∈Λec(zj))
c.

(ii) Let v be an element of Uc(A), let w be an element of U(A∗∗) that is
majorized by v, and let {zj : j ∈ Λ1} and {zj : j ∈ Λ2} be maximal
L-orthogonal families of elements of {w}′ and {v − w}′, respectively.

Let Λ be the union of Λ1 and Λ2, let Λf1 , Λf2 , and Λf be the sets of finite
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subsets of Λ1, Λ2, and Λ, partially ordered by set inclusion, respectively,

and for γ contained in Λf1 , Λf2 , or Λf , let

eγ =
∑
j∈γ

e(zj).

Then, {eγ : γ ∈ Λf1}, {eγ : γ ∈ Λf2}, and {eγ : γ ∈ Λf} form increasing

nets of elements in Ũ(A∗∗) that converge in the σ(A∗∗, A∗)-topology to
w, v − w, and v, respectively, and

w = ∨j∈Λ1
e(zj), v − w = ∨j∈Λ2

e(zj), v = ∨j∈Λe(zj).

(iii) Under the conditions of (ii), suppose that w is Q-dense in v. Then

(11) v = (∨j∈Λ1
e(zj))

c = (∨j∈Λ1
ec(zj))

c.

Proof. (i) The formula (10) follows immediately from Corollary 3.2(ii) and
Lemma 4.3(ii)(c) and (iii).

(ii) The existence of the maximal L-orthogonal families in {w}′ and in {v−
w}′ is guaranteed by Corollary 3.2(ii) and that {e(zj) : j ∈ Λ} is an orthogonal
family of tripotents dominated by v follows from Corollary 3.2(i). It remains

to show that it is maximal. If not, then there exists an element u in Ũ(A∗∗)
majorized by v and orthogonal to the set {e(zj) : j ∈ Λ}. Then, using Corollary
3.2(i), u is orthogonal to both w and v − w, and, therefore, equal to zero. It
follows that the orthogonal family {e(zj) : j ∈ Λ} majorized by v is maximal,
as required.

(iii) The equation (11) follows from (i) and Lemma 4.3(iii). �

The following result, that is, in part, proved in [18], gives a criterion for a
tripotent v in the JBW ∗-triple A∗∗ to be a compact support tripotent ec(x)
of an element x on the surface of the unit ball A∗1. It was shown in the paper
cited above that this is equivalent to the corresponding σ(A,A∗)-closed face
({v}′)′ of A1 being σ(A,A∗)-exposed.

Theorem 4.5. Let A be a JB ∗-triple with dual Banach space A∗ and bidual
JBW ∗-triple A∗∗, let Ũ(A∗∗) be the complete ortho-lattice of tripotents in A∗∗

and let v be an element of the complete atomic lattice Ũc(A) of compact tripo-

tents in Ũ(A∗∗). Then, there exists an element x, of norm one, in the unit ball
A∗1 in A∗ such that v coincides with the compact support tripotent ec(x) if and

only if there exists a σ-finite element w of Ũ(A∗∗) that is Q-dense in v.

Proof. Suppose that v is equal to ec(x) for some element x of norm one in
A∗. Let w be equal to e(x), which, by Corollary 3.3(i), is σ-finite. Moreover,
by Lemma 4.3(iii), e(x) is Q-dense in ec(x) and the first part of the proof is
complete. Conversely, suppose that the element v of Uc(A) majorizes a Q-dense
σ-finite tripotent w. Then, there exists an element x of norm one in A∗ such
that w coincides with e(x). It follows that v, which is equal to wc, coincides
with e(x)c which, by Lemma 4.3(iii), coincides with ec(x). �
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It is now possible to investigate an alternative characterisation of the cir-
cumstances under which an element v of Uc(A) is a compact support tripotent.
Let u be a further element of Uc(A) that majorizes v and recall that Cu, defined

in (7), denotes the principal order ideal in the complete atomic lattice Ũc(A)
corresponding to u. In the remaining part of this section discussions will be
restricted to the circumstances that hold in the result above. As a consequence
of Corollary 3.2(iii) and Lemma 4.1, it is only necessary to consider the JBW-
algebra A∗∗2 (u)sa, its pre-dual A∗∗2 (u)∗,sa and the unital GM-space Au consisting
of all σ(A∗, A)-continuous real-valued affine functions on the σ(A∗, A)-compact
convex set {u}′. In this case A∗∗2 (u)sa is the bidual of the unital GM-space Au,
the ordering, unit, and norm as a unital GM-space agreeing with those as a
JBW-algebra. In particular, the order interval Cu, defined in (7), consists of
idempotents in the JBW-algebra A∗∗2 (u)sa compact relative to Au. For further
details, the reader is referred to [3, 6, 18–20].

Lemma 4.6. Let A be a JB ∗-triple with dual Banach space A∗ and bidual
JBW ∗-triple A∗∗, let Ũ(A∗∗) be the complete ortho-lattice of tripotents in A∗∗,

let v be an element of the complete atomic lattice Ũc(A) of compact tripotents
in A∗∗, not equal to zero or ω, let

Cv = {q ∈ Ũc(A) : 0 ≤ q ≤ v},

let w be an element of Ũ(A∗∗) that is Q-dense in v, and let {zj : j ∈ Λ} be
a maximal L-orthogonal family of elements of {w}′ such that w coincides with
∨j∈Λe(zj). For each element j in Λ, let

D(j) = {q ∈ Cv \ {v} : q ∧ e(zj) 6= 0}.

Then, D(j) is an anti-order ideal in Cv, closed under finite orthogonal sums,
such that

(12) Cv \ {0} = (∨j∈ΛD(j))c.

Proof. The existence of the family {D(j) : j ∈ Λ} is a consequence of Lemmas
4.1-4.4. Moreover, it is clear that if q1 and q2 are elements of Cv, not equal to
v, with q1 in D(j) and q1 majorized by q2, then

0 6= q1 ∧ e(zj) ≤ q2 ∧ e(zj),

and q2 lies in D(j). Therefore D(j) is an anti-order ideal in Cv. By Lemma 4.2,
finite sums of orthogonal compact tripotents are compact, and, hence, D(j) is
closed under the formation of such sums.

It therefore remains to show that (12) holds. Observe that, for each element
j in Λ, the anti-order ideal D(j) does not contain zero and is contained in Cv.
It follows that

∨j∈ΛD(j) ⊆ Cv.
Let q be an element of Cv and, for j in Λ, let

q(j) = q ∧ ec(zj).
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Since the infimum of a family of elements of Ũc(A) also lies in Ũc(A) it follows
that q(j) lies in Cv or is equal to zero. Moreover, if q(j) is non-zero, then

q(j) ∧ e(zj) = q ∧ ec(zj) ∧ e(zj) = q ∧ e(zj) 6= 0,

and it follows that q(j) is contained in D(j) or is equal to zero.
The remainder of the proof consists of showing that q coincides with

(∨j∈Λq
(j))c. As in Lemma 4.4,

w = ∨j∈Λe(zj),

where

v = wc = (∨j∈Λec(zj))
c.

Recall that {e(zj)}′ coincides with ({zj}′)′, {ec(zj)}′ coincides with({zj}′)′ and,
since q is compact, (({q}′)′)′ coincides with {q}′. Then,

{(q ∧ e(zj))c}′ = (({q ∧ e(zj)}′)′)′ = (({q}′ ∩ {e(zj)}′)′)′

= (({q}′ ∩ ({zj}′)′)′)′ = (({q}′)′ ∨ (({zj}′)′)′)′

= (({q}′)′)′ ∩ ((({zj}′)′)′)′ = {q}′ ∩ {ec(zj)}′
= {q ∧ ec(zj)}′,

and

(13) (q ∧ e(zj))c = q ∧ ec(zj).

For each element k in Λ, using (13),

q ∧ e(zk) ≤ q ∧ ec(zk) ≤ ∨j∈Λq ∧ ec(zj)
= ∨j∈Λ(q ∧ e(zj))c ≤ (∨j∈Λ(q ∧ e(zj))c)c.(14)

Moreover, using Corollary 3.3(ii) and (14),

q ∧ w = q ∧ (∨j∈Λe(zj)) = q ∧ lim
σ(A∗∗,A∗)

{Σj∈γe(zj) : γ ∈ Λf}

= lim
σ(A∗∗,A∗)

{Σj∈γq ∧ e(zj) : γ ∈ Λf} ≤ ∨j∈Λq ∧ e(zj)

≤ (∨j∈Λq ∧ ec(zj))c,(15)

and,

{(q ∧ w)c}′ = (({q ∧ w}′)′)′ = (({q}′ ∩ {w}′)′)′ = (({q}′)′ ∨ ({w}′)′)′

= (({q}′)′)′ ∩ (({w}′)′)′ = {q}′ ∩ {wc}′ = {q}′ ∩ {v}′
= {q}′.(16)

It follows from (15)-(16) that

q = (q ∧ w)c ≤ (∨j∈Λq ∧ ec(zj))c = (∨j∈Λq
(j))c ≤ q,

thereby completing the proof of (12). �
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A further property of elements of the family {D(j) : j ∈ Λ} of anti-order
ideals of self-adjoint idempotents in the JBW-algebra A∗∗2 (u)sa, compact rela-
tive to the unital GM-space Au, defined above, is given by the following result.

Lemma 4.7. Under the conditions of Lemma 4.6, for each finite subset S of
D(j) given by

S = {q1, q2, . . . , qn}
the covering number c(S) of S, defined by

(17) c(S) = inf
y∈{v}′

Σnk=1n
−1y(qk),

is less than one.

Proof. For the set S first suppose that

(18) (∨nk=1qk)c 6= v.

Then, by [18], Lemma 4.3, there exists an element z in the set ∂e{v}′ of extreme
points of the σ(A∗, A)-closed face {v}′ such that e(z), which coincides with
ec(z), is orthogonal to (∨nk=1qk)c and, therefore, to each element of S, in which
case, using §2.6, for k equal to 1, 2, . . . , n, z(qk) is equal to zero. It follows that

c(S) ≤ Σnk=1n
−1z(qk) = 0,

and c(S) is equal to zero. Now suppose that, contrary to (18),

(∨nk=1qk)c = v.

Consider the set {q1, q2, . . . , qn−1} and first suppose that

(∨n−1
k=1qk)c 6= v.

Then, as before, there exists an element z in ∂e{v}′ such that, for k equal to
1, 2, . . . , n−1, z(qk) is equal to zero and z(qn) is equal to a real number between
zero and one. It follows that, in this case,

c(S) ≤ Σnj=1n
−1z(qk) ≤ 1/n.

If

(∨n−1
k=1qk)c = v,

then the process can be repeated, reaching the conclusion that either c(S) is
less than or equal to 2/n or that

(∨n−2
k=1qk)c = v.

Consequently, this procedure will terminate when only {q1, q2} remain, the
conclusion being that, either c(S) is less than or equal to 1 − 2/n or that
(q1 ∨ q2)c is equal to v. Since, neither of q1 or q2 is equal to v it follows that it
is possible to find an element z in ∂e{v}′ such that z(q1) is equal to zero, and
for k equal to 2, 3, . . . , n, z(qk) lies between zero and one. It then follows that

c(S) ≤ 1− 1/n.
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Observe that, if S consists of a single element {q1}, then q1 is not equal to v
and it is possible to find an element z of {v}′ such that z(q1) is equal to zero
implying that c(S) is equal to zero. This completes the proof of the lemma. �

The previous results may now be combined in order to present a new criterion
for determining when an element v of the of the complete atomic lattice Ũc(A)
of tripotents in A∗∗ compact relative to A, not equal to the adjoined largest
element ω, is a compact support tripotent of an element x of A∗ of norm one.

Theorem 4.8. Let A be a JB ∗-triple with dual A∗ and bidual JBW ∗-triple
A∗∗, let u and v be tripotents in A∗∗, compact relative to A, with v majorized
by u, let Cv be the complete atomic lattice of self-adjoint idempotents in the
JBW ∗-algebra A∗∗2 (v) compact relative to the unital GM-space Av of σ(A∗, A)-
continuous real-valued affine functions on {v}′, and let {D(j) : j ∈ Λ} be the
family of anti-order ideals in Cv constructed in Lemma 4.6. Then, there exists
an element x in A∗ of norm one such that v is the compact support tripotent
ec(x) of x if and only if the family {D(j) : j ∈ Λ} is countable.

Proof. The result follows immediately from Theorem 4.5 using Lemmas 4.1,
4.6, and 4.7. �

Under the conditions of Theorem 4.8, let v be an element of Cu and let Av
be the unital GM-space of σ(A∗, A)-continuous real affine functions on {v}′.
The unit in Av is the σ(A∗, A)-continuous real-valued affine function taking the
constant value one on {v}′ and, therefore, can be identified with v, in which
case {v}′ and {v}′ may also be identified. Elements of {v}′ are said to be states
of Av and a state x is said to be faithful if, for an element a in the positive cone
Av,+ of the unital GM-space Av, x(a) is equal to zero then a is equal to zero.

A particular case of the situation described above occurs when A is a unital
C∗-algebra in which case the self-adjoint part Asa is a unital GM-space. It was
shown in [48] that a separable unital C∗-algebra always possesses a faithful state
as does a C∗-algebra of operators on a separable Hilbert space. The following
result is certainly well known and its proof, given below, can be reconstructed
from those of related results in [1] and [27].

Lemma 4.9. Let A be a unital C ∗-algebra with unit v and self-adjoint part the
unital JB-algebra and unital GM-space Av, and let x be an element of the state
space {v}′ of A. Then, x is a faithful state of Av if and only if the compact
support tripotent ec(x) of x coincides with v.

Proof. Observe that, since x is contained in {v}′, ec(x) is majorized by v and
is, therefore, a projection in the JBW-algebra A∗∗sa .

First suppose that v and ec(x) coincide and let a be an element of Aec(x),+

such that x(a) is equal to zero. Then, a is contained in the order interval

[0, ‖a‖ec(x)] = {b ∈ Aec(x) : 0 ≤ b ≤ ‖a‖ec(x)}
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and

(19) x(‖a‖ec(x)− a) = ‖a‖x(ec(x))− x(a) = ‖a‖.
Using (19),

x(ec(x)− a/‖a‖) = 1,

and ec(x) − a/‖a‖ lies in {x}′ which coincides with {ec(x)}. It follows that a
is equal to zero and x is faithful, as required.

Conversely, if x is a faithful state of Av, then ec(x) is majorized by v, and
suppose that ec(x) is not equal to v. As in the proof of [18], Lemma 4.3, there
exists an element z in the set ∂e{v}′ of extreme points of the σ(A∗, A)-compact
state space {v}′ such that ec(z), which coincides with e(z), is orthogonal to
ec(x) and

ec(x) + ec(z) ≤ v.
Observe that ec(x) and ec(z) are orthogonal compact projections in the W∗-
algebra A∗∗. Using [27], Theorem 1.4, there exist orthogonal positive elements
a and c of norm one in ({ec(x)}′)′ and ({ec(z)}′)′, respectively, such that

0 ≤ a+ c ≤ v
which implies that

0 ≤ x(a) + x(c) ≤ x(v)

and, since x(a) and x(v) are both equal to one, x(c) is equal to zero. Since x
is faithful it follows that c is equal to zero, yielding the required contradiction,
which implies that ec(x) and v coincide. �

The following corollary of Theorems 4.5 and 4.8 connects the results above
with the question of when a unital C∗-algebra possesses a faithful state.

Corollary 4.10. Let A be a unital C ∗-algebra with unit v and bidual W ∗-
algebra A∗∗. Then, the following are equivalent:

(i) A possesses a faithful state.
(ii) There exists a σ-finite projection w in A∗∗ that is Q-dense in v.
(iii) There exists a projection w in A∗∗ such that the family {D(j) : j ∈

Λ} of anti-order ideals of the complete atomic lattice Cv of compact
projections in A∗∗, constructed as in Lemma 4.6, is countable.

5. The classical example

The results of the preceding section are best illustrated by examining the
situation in which A is a unital commutative C∗-algebra. Much of what appears
below can be extracted from [11].

Let (Ω, ψ) be a compact Hausdorff space and let Cψ(Ω) denote the JB∗-
triple of ψ-continuous complex-valued functions on Ω. A positive regular Borel
measure x on (Ω, ψ) identified, by the Riesz representation, with a positive
linear functional on Cψ(Ω) is said to be normal if for each bounded increasing
net (aj) of elements of Cψ(Ω) with supremum a, the net (x(aj)) converges to
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x(a). The space (Ω, ψ) is said to be hyper-Stonean if it has the two properties
that the closure of each element of ψ is itself contained in ψ and that the set
of normal positive regular Borel measures on (Ω, ψ) separates points in Cψ(Ω).
The proof of the following result may be found in [46].

Lemma 5.1. The compact Hausdorff space (Ω, ψ) is hyper-Stonean if and only
if the JB ∗-triple Cψ(Ω) is a JBW ∗-triple.

Observe that, in this case, the complex linear span Nψ(Ω) of the cone of
normal positive regular Borel measures on (Ω, ψ) is a norm-closed subspace
of the complex Banach space Mψ(Ω) of all complex regular Borel measures
on (Ω, ψ), which, by the Riesz representation, may be identified with the dual
space Cψ(Ω)∗ of Cψ(Ω). Moreover, Nψ(Ω) is the unique predual of Cψ(Ω)
and the identification of Nψ(Ω) as a closed subspace of Mψ(Ω) is merely the
isometric embedding of the complex Banach space Nψ(Ω) into its bidual.

Lemma 5.2. Under the conditions of Lemma 5.1, the following results hold.

(i) Let u be a non-zero element of the set U(Cψ(Ω)) of tripotents in Cψ(Ω).
Then, there exists a unique ψ-clopen subset Eu of Ω given by

Eu = {t ∈ Ω : |u(t)| = 1}
such that

(20) u = χEuu

in which case

(21) Eu = Ω \ {t ∈ Ω : u(t) = 0}.
(ii) For non-zero elements u and v of U(Cψ(Ω)), u ≤ v if and only if

Eu ⊆ Ev and

(22) u = χEuv,

and u ⊥ v if and only if

Eu ∩ Ev = ∅.
(iii) Let (uj)j∈Λ be a decreasing net of non-zero elements of U(Cψ(Ω)).

Then, the net has a non-zero infimum u such that Eu coincides with
the interior (∩j∈ΛEuj )

◦ψ of the ψ-closed set ∩j∈ΛEuj .

Proof. The proofs of (i) and (ii) are straightforward calculations.
In order to prove (iii) observe that {Euj : j ∈ Λ, j ≥ j0} is a decreasing

family of non-empty ψ-clopen sets in Ω such that, for j ≥ j0,

uj = χEuj uj0 .

Since, for each element j in Λ, the set Euj is a non-empty compact subset of a
compact space it follows that the set ∩{j∈Λ:j≥j0}Euj is non-empty and compact
and equal to ∩j∈ΛEuj . Observe that the infimum u of the net (uj)j∈Λ is equal
to χEuuj0 . It follows that Eu is the largest ψ-clopen set contained in ∩j∈ΛEuj
which, from the definition of a hyper-Stonean space, is its interior. �
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Before continuing the investigation, for future reference, the following easily
demonstrated results concerning the support of elements of norm one in Cψ(Ω)
are included.

Lemma 5.3. Under the conditions of Lemma 5.2, let a be an element of
norm one in Cψ(Ω). Then, the sequence (|a|2ja) in Cψ(Ω) converges in the
σ(Cψ(Ω), Cψ(Ω)∗)-topology to the non-zero tripotent u(a) in Cψ(Ω) defined by

u(a) = χEu(a)
a,

where
Eu(a) = {t ∈ Ω : |a(t)| = 1}.

Lemma 5.4. Under the conditions of Lemma 5.2, let x be a normal measure
on (Ω, ψ), let Ũ(Cψ(Ω)) be the complete ortho-lattice of tripotents in Cψ(Ω),
and let

e(x) = ∧{u ∈ Ũ(Cψ(Ω)) : P2(u)∗x = x}.
Then

Ee(x) = ∩{Eu : u ∈ Ũ(Cψ(Ω)), P2(u)∗x = x}.

Let x be a positive regular Borel measure on (Ω, ψ). Then, the support of x
is defined to be the ψ-closed subset of Ω given by

supp(Ω,ψ)x = Ω \ (∪{U ∈ ψ : x(χU ) = 0}).

The support of any complex regular Borel measure on (Ω, ψ) is defined to be
the support of its modulus. It is now possible to give a proof of the result that
identifies the support of x in terms of those in §3.

Theorem 5.5. Let x be a normal positive measure on the hyper-Stonean space
(Ω, ψ) regarded as an element of Cψ(Ω)∗ and let e(x) be the tripotent defined
in Lemma 5.4. Then the support of x coincides with Ee(x).

Proof. Observe that

Ω \ supp(Ω,ψ)x = ∪{U ∈ ψ : P2(χU )∗x = 0}.

Suppose that U lies in ψ and is contained in Ω\supp(Ω,ψ)x. Then, supp(Ω,ψ)x∩
U is empty, with supp(Ω,ψ)x closed and U open. Since (Ω, ψ) is hyper-Stonean

and, hence, extremally disconnected, the set supp(Ω,ψ)x
ψ∩Uψ is also empty and

it follows that the ψ-clopen set U
ψ

also satisfies the condition that P2(χ
U
ψ )∗x

is equal to zero. It follows that

Ω \ supp(Ω,ψ)x = ∪{U : U,Ω \ U ∈ ψ, P2(χU )∗x = 0}
= ∪{U : U,Ω \ U ∈ ψ, x(χU ) = 0}.

Hence, by Lemma 5.4,

supp(Ω,ψ)x = ∩{V : V,Ω \ V ∈ ψ, P2(χV )∗x = x} = Ee(x),

as required. �
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It is now possible to turn to the properties of compact tripotents. Let (Ω, τ)
be a compact Hausdorff space and let Mτ (Ω) be the complex Banach space of
regular Borel measures on (Ω, τ) which, by means of the Riesz representation,
will be identified with the dual space Cτ (Ω)∗ of the JB∗-triple Cτ (Ω). Observe
that every complex-valued non-zero homomorphism (or character) on Cτ (Ω)
is of the form δt for some unique element t of Ω defined, for each element a of
Cτ (Ω), by

(23) δt(a) = a(t).

Moreover, the mapping t 7→ δt is a homeomorphism from (Ω, τ) onto the set
∂e(Mτ (Ω)+,1) of extreme points of the set of positive regular Borel measures on
(Ω, τ) of norm one endowed with the relative weak∗-topology σ(Mτ (Ω), Cτ (Ω)).
The bidual Cτ (Ω)∗∗ is a JBW∗-triple, the canonical linear isometry from Cτ (Ω)
into Cτ (Ω)∗∗ being an algebraic triple isomorphism. The unique predual Cτ (Ω)∗

of Cτ (Ω)∗∗ can be identified with Mτ (Ω). The compact Hausdorff space (Ω̂, ψ)
of characters of Cτ (Ω)∗∗ endowed with the relative σ(Cτ (Ω)∗∗∗, Cτ (Ω)∗∗)-
topology, denoted by ψ, is such that the JBW∗-triple Cτ (Ω)∗∗ can be iden-

tified with Cψ(Ω̂) the unique predual of which can be identified with any of

Cτ (Ω)∗, Mτ (Ω), and Nψ(Ω̂). The hyper-Stonean space (Ω̂, ψ) is said to be the
hyper-Stonean envelope of (Ω, τ).

For t in Ω̂, the linear functional δt on Cψ(Ω̂) defined as in (23), is a character

of Cψ(Ω̂), the restriction of which to Cτ (Ω) is clearly also a character. Hence,
there exists uniquely an element πt of Ω such that

(24) δπt = δt|Cτ (Ω).

Suppose that (tj) is a net in Ω̂ converging in the ψ-topology to t. Then, for
each element a of Cτ (Ω)∗∗, the net (a(tj)) converges to a(t). In particular,
this holds for all elements a in Cτ (Ω) which implies that the net (πtj) in Ω
converges in the τ -topology to πt. It follows from (23) and (24) that π is a

continuous mapping from (Ω̂, ψ) to (Ω, τ). Let s be an element of Ω and let ιs

be the element of Ω̂ such that, for all elements a of Cψ(Ω̂),

(25) διs(a) = a(δs) = a(s),

where δs is the character in ∂eM
τ (Ω)+,1 corresponding to s or, equivalently,

the point measure at s of norm one. Observe that, by (25), for s1 and s2 in Ω

if διs1 and διs2 coincide, then, for all elements a in Cψ(Ω̂), and, hence, for all
elements a in Cτ (Ω), a(s1) and a(s2) coincide, which, by the Stone-Weierstrass
theorem, implies that s1 and s2 coincide. Hence ι is an injection from Ω into
Ω̂. Furthermore, for all elements s in Ω and a in Cτ (Ω), using (24) and (25),

δπιs(a) = διs|Cτ (Ω)(a) = a(s) = δs(a),

and, hence, πιs coincides with s. It follows that π is a continuous surjection
from (Ω̂, ψ) onto (Ω, τ) and that Ω may be regarded as a subset of Ω̂ possessing
two topologies, τ and ψ|Ω. It can be seen that, for each element s of Ω, the
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mapping x 7→ x({s}) is a bounded linear functional λs onMτ (Ω) and, therefore,

an element of Cψ(Ω̂). It follows that, for all elements s in Ω, when restricted
to Ω the function χs is ψ-continuous and, hence, that the topology ψ restricted
to Ω is discrete.

For each element s of Ω, observe that, since {s} is τ -closed and π is contin-
uous, the fibre π−1({s}) is ψ-closed. Moreover,

Ω̂ = ∪{π−1({s}) : s ∈ Ω}.

Furthermore, the canonical image of Cτ (Ω) in Cψ(Ω̂) consists of functions that
are constant on each of the fibres π−1({s}). It can be shown that π−1(Ω) is an

element of ψ such that π−1(Ω)
ψ

coincides with Ω̂.

It is now possible to identify the tripotents in Cψ(Ω̂) that are compact
relative to Cτ (Ω).

Theorem 5.6. Let (Ω, τ) be a compact Hausdorff space and let (Ω̂, ψ) be its

hyper-Stonean envelope. For each non-zero tripotent u in Cψ(Ω̂), let

u = χEuu

be the unique decomposition of u described in Lemma 5.2, and, for u equal to
zero, let Eu be the empty set. Then, the mapping u 7→ Eu ∩ Ω is an order
isomorphism from the complete atomic lattice Ũc(Cτ (Ω)) of tripotents u in

Cψ(Ω̂) compact relative to Cτ (Ω) onto the complete atomic lattice of τ -compact
subsets of Ω.

Proof. Suppose that u is compact relative to Cτ (Ω). If u is equal to zero, then
the result is immediate. If not, then there exists a set (aj)j∈Λ of elements of

Cτ (Ω) of norm one such that (u(aj))j∈Λ forms a decreasing net in U(Cψ(Ω̂))

with infimum u to which it converges in the weak∗-topology σ(Cψ(Ω̂),Mτ (Ω)).
It follows from Lemmas 5.2 and 5.3 that, for j0 and j in Λ with j0 ≤ j,

u(aj) = χEu(aj)
aj0 , u = χEuaj0 ,

and

Eu(aj) ⊆ Eu(aj0 ),

where

u = ∧j∈Λu(aj), Eu = (∩j∈ΛEu(aj))
◦ψ,

and, being the intersection of a decreasing family of non-empty ψ-compact
sets, ∩j∈ΛEu(aj) is ψ-compact and non-empty. Since the net (χEu(aj)

aj0)j≥j0

converges in the weak∗-topology, σ(Cψ(Ω̂),Mτ (Ω)) to χEuaj0 , and, for all ele-
ments s in Ω, the point measures δs lie in Mτ (Ω), it can be seen that, for all
elements s in Ω, the net (χEu(aj)

(s)aj0(s))j≥j0 converges to χEu(s)aj0(s). It

follows that

Eu ∩ Ω = (∩j∈ΛEu(aj)) ∩ Ω = ∩j∈Λ(Eu(aj) ∩ Ω).
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Notice that Eu(aj) ∩ Ω is the set of points in Ω at which the modulus of the
continuous function aj of norm one attains its maximum value, which is a τ -
compact Gδ subset of Ω. Then, since Eu ∩Ω is the intersection of a decreasing
family of such subsets, Eu ∩ Ω is a τ -compact subset of Ω, as required.

Conversely, let F be a non-empty τ -compact subset of Ω. Then, using
Urysohn’s lemma, there exists a decreasing net (Eu(aj) ∩ Ω)j∈Λ of non-empty
τ -compact Gδ subsets of Ω such that

F = ∩j∈ΛEu(aj) ∩ Ω.

Then, the decreasing net (u(aj))j∈Λ is σ(Cψ(Ω̂),Mτ (Ω))-convergent to its in-

fimum u which, by definition, lies in Ũc(Cτ (Ω)). As in the first part of the
proof,

Eu = (∩j∈ΛEu(aj))
◦ψ,

and

Eu ∩ Ω = ∩j∈ΛEu(aj) ∩ Ω = F.

Observe that, if u1 and u2 are compact tripotents such that Eu1∩Ω and Eu2∩Ω
coincide, then

Eu1
= πι(Eu1

∩ Ω) = πι(Eu2
∩ Ω) = Eu2

,

and the mapping is a bijection. This completes the proof of the theorem. �

Let x be a positive regular Borel measure on (Ω, τ) and, therefore, a nor-

mal measure on (Ω̂, ψ). Then, Theorem 5.5 shows that the element e(x) of

Ũ(Cψ(Ω̂)) defined by

e(x) = ∧{u ∈ Ũ(Cψ(Ω̂)) : P2(u)∗x = x}

is such that

Ee(x) = Ω̂ \ ∪{U ∈ ψ : x(χU ) = 0} = supp(Ω̂,ψ)x.

For a regular Borel measure x on (Ω, τ) define

ec(x) = ∧{u ∈ Ũc(Cτ (Ω)) : P2(u)∗x = x}.

Then, e(x) is majorized by ec(x) which lies in Ũc(Cτ (Ω)). The next result
explains why ec(x) is defined to be the compact support tripotent of x.

Theorem 5.7. Let x be a regular Borel probability measure on the compact
Hausdorff space (Ω, τ), with compact support tripotent ec(x), and let

supp(Ω,τ)x = Ω \ (∪{U ∈ τ : x(χU ) = 0})

be the support of x. Then

supp(Ω,τ)x = Eec(x) ∩ Ω.
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Proof. Notice that

Eec(x) = (∩{Eu : Eu, Ω̂ \ Eu ∈ ψ,Ω \ (Eu ∩ Ω) ∈ τ, P2(u)∗x = x})◦ψ.
However, P2(ec(x))∗x and x coincide and, hence,

∩{Eu : Eu, Ω̂ \ Eu ∈ ψ,Ω \ (Eu ∩ Ω) ∈ τ, P2(u)∗x = x} ⊆ Eec(x),

which implies that

Eec(x) = ∩{Eu : Eu, Ω̂ \ Eu ∈ ψ,Ω \ (Eu ∩ Ω) ∈ τ, P2(u)∗x = x}.
Therefore, observing that, since the relative ψ-topology on Ω is discrete, every
subset of Ω is the intersection of a ψ-clopen set in Ω̂ with Ω,

Eec(x) ∩ Ω = ∩{Eu ∩ Ω : Eu, Ω̂ \ Eu ∈ ψ,Ω \ (Eu ∩ Ω) ∈ τ, P2(u)∗x = x}
= ∩{F : Ω \ F ∈ τ, x(χF ) = ‖x‖}
= Ω \ ∪{G : G ∈ τ, x(χG) = 0}
= supp(Ω,τ)x,

as required. �

It is now possible to apply the results of §4 to the classical example. Let
(Ω, τ) be a compact Hausdorff space and let (Ω̂, ψ) be its hyper-Stonean enve-
lope. By Lemma 5.2 there is associated with each tripotent v of the complete
lattice Ũ(Cψ(Ω̂)) a unique ψ-clopen subset Ev of Ω̂ such that, for each element
t in Ev, |v(t)| is equal to one and v coincides with χEvv. Moreover, for u and v

in Ũ(Cψ(Ω̂)), v ≤ u if and only if Ev is contained in Eu and u and v agree on
Ev, and u is orthogonal to v if and only if Eu and Ev have empty intersection
in which case Ev∨u coincides with both Ev+u and Eu ∪ Ev. Furthermore, for
each family {vj : j ∈ Λ} of tripotents the ψ-clopen set (∩j∈ΛEvj )

◦ψ is equal
to E∧j∈Λvj and, if the family is an increasing net then E∨j∈Λvj coincides with

the ψ-closure ∪j∈ΛEvj
ψ

, which is ψ-clopen. This result applies, in particular,

to any orthogonal family {vj : j ∈ Γ} when Λ is equal to the set Γf of finite
subsets of Γ.

As was remarked above, the space Ω is naturally embedded in Ω̂ and, there-
fore, possesses two topologies, its own topology τ and the restriction of ψ to Ω,
which is discrete. In this situation Lemma 4.3 may be interpreted as follows.
Let Ew be a ψ-clopen subset corresponding to the element w of Ũ(Cψ(Ω̂)),
having Q-closure wc. Then,

Ewc = (∩{Ev ⊆ Ω̂ : Ω \ (Ev ∩ Ω) ∈ τ, Ew ⊆ Ev})◦ψ.
Therefore, Ewc is the ψ-closure of Ew and Ewc ∩Ω is the τ -closure of Ew ∩Ω.

When x is a positive regular Borel probability measure on the compact
Hausdorff space (Ω, τ) and, therefore, a normal measure on its hyper-Stonean

envelope (Ω̂, ψ), it follows from Theorems 5.5 and 5.7 that Ee(x) is the support

of x in (Ω̂, ψ) and Eec(x) ∩ Ω is the support of x in (Ω, τ). In this example,
Lemma 4.4 and Theorem 4.5 lead to the following result.
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Corollary 5.8. Let Ev be a ψ-clopen subset of Ω̂ such that Ev ∩Ω is τ -closed,
and let w be Q-dense in v, in which case Ev ∩ Ω is the τ -closure of Ew ∩ Ω.
Then, the following results hold.

(i) There exists a maximal set {zj : j ∈ Λ} of normal L-orthogonal regular

Borel probability measures on (Ω̂, ψ) with pairwise disjoint supports
{Ee(zj) : j ∈ Λ} such that

Ew = ∪j∈ΛEe(zj)
ψ
,

and
Ev ∩ Ω = ∪j∈Λ(Eec(zj) ∩ Ω)

τ
.

(ii) There exists a regular Borel probability measure x on (Ω, τ) with support
Ev ∩ Ω if and only if Λ is countable.

The results of Lemmas 4.6 and 4.7, and Theorem 4.8 can now be interpreted
in this example.

Corollary 5.9. Under the conditions of Corollary 5.8, let Cv be the set of ψ-
clopen subsets of Ω̂ the intersections with Ev ∩ Ω of which are τ -closed, and,
for each element j in Λ, let

D(j) = {Eq ∈ Cv \ {Ev} : Eq ∩ Ee(zj) ∩ Ω 6= ∅}.
Then, the set of such subsets of Cv has the following properties.

(i) For each pair Eq1 and Eq2 of elements of Cv with Eq1 ⊆ Eq2 , if Eq1 is

contained in D(j), then Eq2 is contained in D(j). (D(j) is an anti-order
ideal in Cv.)

(ii) The union E of each finite set Eq1 , Eq2 , . . . , Eqn of disjoint elements of

D(j) such that E 6= Ev is contained in D(j).
(iii) For each element Eq of Cv \ {∅}, and each element j in Λ, there exist

elements
Eq(j) = Eq ∩ Eec(zj)

in D(j) such that

Eq ∩ Ω = ∪j∈Λ(Eq(j) ∩ Ω)
τ
.

(iv) For each finite subset Eq1 , Eq2 , . . . , Eqn of elements of D(j), the union
E of which is a proper subset of Eq, the covering number c(S) of S,
defined by

(26) c(S) = inf
t∈Ev∩Ω

Σnk=1n
−1χEqk∩Ω(t),

is less than one.

It should be recognised that the set Ev ∩ Ω over which the infimum in
Corollary 5.8 is taken can be identified with the set of extreme points of the
σ(A∗, A)-compact convex set {v}′ in A∗1 and the Krein-Milman theorem may
be applied to show that the formulae in (17) and (26) are equivalent.

In the classical example Theorem 4.8 reduces to the following final result.



222 C. M. EDWARDS AND L. OLIVEIRA

Corollary 5.10. Let (Ω, τ) be a compact Hausdorff space with hyper-Stonean

envelope (Ω̂, ψ) and let E be a ψ-clopen subset of Ω̂ such that E∩Ω is τ -closed.
Then, the following conditions are equivalent.

(i) There exists a regular Borel probability measure x on (Ω, τ) with support
E ∩ Ω.

(ii) The family {D(j) : j ∈ Λ}, as defined in Corollary 5.9, consisting of sets

of ψ-clopen subsets of Ω̂ the intersections of which with Ω are τ -closed,
is countable.

A similar result was proved directly by Hebert and Lacey in [36], Theorem
1.6.
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