THE IDEAL OF WEAKLY p-NUCLEAR OPERATORS AND ITS INJECTIVE AND SURJECTIVE HULLS

JU MYUNG KIM

ABSTRACT. We introduce a larger ideal \mathcal{N}_{wp} of the ideal of p-nuclear operators. We obtain isometric representations of the injective and surjective hulls of \mathcal{N}_{wp} and study them.

1. Introduction

Let $1 \leq p < \infty$. For a Banach space X, let $\ell_p(X)$ (respectively, $\ell_p^w(X)$) be the Banach space with the norm $\|\cdot\|_p$ (respectively, $\|\cdot\|_p^w$) of all X-valued absolutely (respectively, weakly) p-summable sequences. Let $c_0(X)$ (respectively, $c_0^w(X)$) be the Banach space with the norm $\|\cdot\|_\infty$ of all X-valued norm (respectively, weakly) null sequences. For the dual space X^* of X, let $c_0^{w^*}(X^*)$ be the Banach space with the norm $\|\cdot\|_\infty$ of all X^* -valued $weak^*$ null sequences.

For $1 \leq p \leq \infty$, recall the operator ideal $[\mathcal{N}_p, \|\cdot\|_{\mathcal{N}_p}]$ of *p-nuclear operators* (cf. [1,4,11–13]). The ideal $\mathcal{N}_p(X,Y)$ is defined as all operators T which have a representation

$$T = \sum_{n=1}^{\infty} x_n^* \underline{\otimes} y_n \text{ and } ||T||_{\mathcal{N}_p} := \inf ||(x_n^*)_n||_p ||(y_n)_n||_{p^*}^w,$$

where $(x_n^*)_n \in \ell_p(X^*)$ $(c_0(X^*)$ when $p = \infty)$ and $(y_n)_n \in \ell_{p^*}^w(Y)$ $(c_0(Y))$ when p = 1. Here $1/p + 1/p^* = 1$ and $x_n^* \underline{\otimes} y_n$ is an operator from X to Y defined by $(x_n^* \underline{\otimes} y_n)(x) = x_n^*(x)y_n$, and the infimum is taken over all such representations. When $\ell_p(\cdot)$ and $\ell_{p^*}^w(\cdot)$ in the above notion are interchanged with each other, we denote the operator ideal consisting of such operators by $[\mathcal{N}^p, \|\cdot\|_{\mathcal{N}^p}]$.

We need an another space of vector valued sequences to introduce a weaker notion of the *p*-nuclear operator. The closed subspace $\ell_p^u(X)$ of $\ell_p^w(X)$ consists of all sequences $(x_n)_n$ in X satisfying that

$$\|(0,\ldots,0,x_m,x_{m+1},\ldots)\|_p^w\longrightarrow 0$$

as $m \to \infty$ (cf. [1, Section 8.2] and [6,7]). Note that $\ell^u_\infty(X) = c_0(X)$. The ideal of *p-compact operators* (cf. [1,6,7,12]) is denoted by $[\mathfrak{K}_p, \|\cdot\|_{\mathfrak{K}_p}]$. The

Received March 5, 2018; Revised April 24, 2018; Accepted May 3, 2018. 2010 Mathematics Subject Classification. 46B28, 46B45, 47L20.

Key words and phrases. Banach operator ideal, tensor norm, nuclear operator.

ideal $\mathfrak{K}_p(X,Y)$ is defined as all operators T which have a representation

$$T = \sum_{n=1}^{\infty} x_n^* \underline{\otimes} y_n \text{ and } \|T\|_{\mathfrak{K}_p} := \inf \|(x_n^*)_n\|_p^w \|(y_n)_n\|_{p^*}^w,$$

where $(x_n^*)_n \in \ell_p^u(X^*)$ and $(y_n)_n \in \ell_{p^*}^u(Y)$, and the infimum is taken over all such representations.

A more general notion of the *p*-nuclear operator is the σ -nuclear operator [12]. It is represented as

$$T = \sum_{n=1}^{\infty} x_n^* \underline{\otimes} y_n$$
 and

$$||T||_{\mathcal{N}_{\sigma}} := \inf \Big\{ \sup \Big\{ \sum_{n=1}^{\infty} |x_n^*(x)y^*(y_n)| : ||x|| \le 1, ||y^*|| \le 1 \Big\} \Big\},$$

where $x_n^* \in X^*$ and $y_n \in Y$ such that $\sum_{n=1}^{\infty} x_n^* \underline{\otimes} y_n$ unconditionally converges in the operator norm, and the infimum is taken over all such representations.

Naturally, one may consider the class of operators $T = \sum_{n=1}^{\infty} x_n^* \otimes y_n$ such that $\sum_{n=1}^{\infty} x_n^*(x)y_n$ unconditionally converges in Y for every $x \in X$. Our main concern in this paper is a special subclass of this class. For $1 \leq p \leq \infty$, we say that an operator $T: X \to Y$ is weakly p-nuclear if it is represented as

$$T = \sum_{n=1}^{\infty} x_n^* \underline{\otimes} y_n,$$

where $(x_n^*)_n \in \ell_p^w(X^*)$ $(c_0^{w^*}(X^*)$ when $p = \infty)$ and $(y_n)_n \in \ell_{p^*}^w(Y)$ $(c_0^w(Y))$ when p = 1. We denote the space of all weakly p-nuclear operators from X to Y by $\mathcal{N}_{wp}(X,Y)$ and define a norm on $\mathcal{N}_{wp}(X,Y)$ by

$$||T||_{\mathcal{N}_{wn}} := \inf ||(x_n^*)_n||_p^w ||(y_n)_n||_{p^*}^w,$$

where the infimum is taken over all such weakly p-nuclear representations of T. Then $[\mathcal{N}_{wp}, \|\cdot\|_{\mathcal{N}_{wp}}]$ is a Banach operator ideal (see Theorem 2.1). In this paper, we study the ideal \mathcal{N}_{wp} and its injective and surjective hulls based on the investigation related with the ideals \mathfrak{K}_p and \mathcal{N}_p [3,5,8–10].

2. The ideal of weakly p-nuclear operators

Let us recall the definition of a Banach operator ideal $[\mathcal{A}, \| \cdot \|_{\mathcal{A}}]$ as follows. For each pair (X, Y) of Banach spaces, let $(\mathcal{L}(X, Y), \| \cdot \|)$ be the Banach space of all operators from X to Y. An operator ideal is an association to each pair of Banach spaces X and Y, of a subset, $\mathcal{A}(X, Y)$, of $\mathcal{L}(X, Y)$ such that

- (O1) $\mathcal{A}(X,Y)$ is a linear subspace of $\mathcal{L}(X,Y)$ and $(\mathcal{A}(X,Y), \|\cdot\|_{\mathcal{A}})$ is a Banach space.
- (O2) $x^* \underline{\otimes} y \in \mathcal{A}(X,Y)$ and $||x^* \underline{\otimes} y||_{\mathcal{A}} = ||x^*|| ||y||$ for every $x^* \in X^*$ and $y \in Y$.

(O3) $STR \in \mathcal{A}(X_0, Y_0)$ and $||STR||_{\mathcal{A}} \leq ||S|| ||T||_{\mathcal{A}} ||R||$ for every $R \in \mathcal{L}(X_0, X)$, $T \in \mathcal{A}(X, Y)$ and $S \in \mathcal{L}(Y, Y_0)$.

Theorem 2.1. For $1 \leq p \leq \infty$, $[\mathcal{N}_{wp}, \| \cdot \|_{\mathcal{N}_{wp}}]$ is a Banach operator ideal.

Proof. The properties (O2) and (O3) of $[\mathcal{N}_{wp}, \|\cdot\|_{\mathcal{N}_{wp}}]$ may be easily verified. So we only show that (O1) holds. Let X and Y be Banach spaces.

The case $p=\infty$: It is easily seen that $\alpha T\in \mathcal{N}_{w\infty}(X,Y)\subset \mathcal{L}(X,Y)$, $\|\alpha T\|_{\mathcal{N}_{w\infty}}=|\alpha|\|T\|_{\mathcal{N}_{w\infty}}$ and $\|T\|\leq \|T\|_{\mathcal{N}_{w\infty}}$ for every $T\in \mathcal{N}_{w\infty}(X,Y)$ and scalar α . Let $T,R\in \mathcal{N}_{w\infty}(X,Y)$ and let $\varepsilon>0$ be given. Let

$$T = \sum_{n=1}^{\infty} x_{2n-1}^* \underline{\otimes} y_{2n-1}, R = \sum_{n=1}^{\infty} x_{2n}^* \underline{\otimes} y_{2n}$$

be weakly ∞ -nuclear representations such that

$$||(y_{2n-1})_n||_1^w = 1 = ||(y_{2n})_n||_1^w$$

and

$$\|(x_{2n-1}^*)_n\|_{\infty} \le (1+\varepsilon)\|T\|_{\mathcal{N}_{w\infty}}, \|(x_{2n}^*)_n\|_{\infty} \le (1+\varepsilon)\|R\|_{\mathcal{N}_{w\infty}}.$$

Then

$$T + R = \sum_{n=1}^{\infty} \left(\frac{x_{2n-1}^*}{\|(x_{2k-1}^*)_k\|_{\infty}} \underline{\otimes} \|(x_{2k-1}^*)_k\|_{\infty} y_{2n-1} + \frac{x_{2n}^*}{\|(x_{2k}^*)_k\|_{\infty}} \underline{\otimes} \|(x_{2k}^*)_k\|_{\infty} y_{2n} \right)$$

$$\in \mathcal{N}_{w\infty}(X, Y)$$

and

$$||T + R||_{\mathcal{N}_{w\infty}} \le ||(||(x_{2k-1}^*)_k||_{\infty} y_{2n-1} + ||(x_{2k}^*)_k||_{\infty} y_{2n})_n||_1^w$$

$$\le (1 + \varepsilon)(||T||_{\mathcal{N}_{w\infty}} + ||R||_{\mathcal{N}_{w\infty}}).$$

Consequently, $(\mathcal{N}_{w\infty}(X,Y), \|\cdot\|_{\mathcal{N}_{w\infty}})$ is a normed linear subspace of $\mathcal{L}(X,Y)$. To show that $(\mathcal{N}_{w\infty}(X,Y), \|\cdot\|_{\mathcal{N}_{w\infty}})$ is complete, let $(T_k)_k$ be a sequence in $\mathcal{N}_{w\infty}(X,Y)$ with $\sum_{k=1}^{\infty} \|T_k\|_{\mathcal{N}_{w\infty}} < \infty$. Then $\sum_{k=1}^{\infty} \|T_k\| < \infty$ and so $\sum_{k=1}^{\infty} T_k$ converges in $\mathcal{L}(X,Y)$. We will show that $\sum_{k=1}^{\infty} T_k \in \mathcal{N}_{w\infty}(X,Y)$ and $\|\sum_{k=1}^{\infty} T_k\|_{\mathcal{N}_{w\infty}} \le \sum_{k=1}^{\infty} \|T_k\|_{\mathcal{N}_{w\infty}}$. Let $\varepsilon > 0$ be given. For each $k \ge 1$, let $(x_{kn}^*)_n \in c_0^{w^*}(X^*)$ and $(y_{kn})_n \in \ell_1^w(Y)$ such that $T_k = \sum_{n=1}^{\infty} x_{kn}^* \underline{\otimes} y_{kn}$ and

$$\|(x_{kn}^*)_n\|_{\infty} \le 1, \ \|(y_{kn})_n\|_1^w \le \|T_k\|_{\mathcal{N}_{w\infty}} + \frac{\varepsilon}{2^k}.$$

Then, since $\sum_{k=1}^{\infty} \|(y_{kn})_n\|_1^w < \infty$, there exists a sequence $(\beta_k)_k$ of real numbers such that

$$\lim_{k \to \infty} \beta_k = \infty, \ \beta_k > 1, \ \sum_{k=1}^{\infty} \beta_k \| (y_{kn})_n \|_1^w \le (1+\varepsilon) \sum_{k=1}^{\infty} \| (y_{kn})_n \|_1^w.$$

Now, we consider the following sequence of rectangular array:

$$(1/\beta_{1})x_{11}^{*} \underline{\otimes} \beta_{1}y_{11} \rightarrow (1/\beta_{1})x_{12}^{*} \underline{\otimes} \beta_{1}y_{12} \qquad (1/\beta_{1})x_{13}^{*} \underline{\otimes} \beta_{1}y_{13} \cdots (1/\beta_{1})x_{1n}^{*} \underline{\otimes} \beta_{1}y_{1n} \cdots \downarrow \downarrow \qquad \downarrow$$

Let $(z_m^*)_m$ and $(z_m)_m$, respectively, be the sequences consisting of the left parts and right parts, respectively, of the above sequence.

Since
$$\lim_{k \to \infty} \sup_j \|(1/\beta_k) x_{kj}^*\| \le \lim_{k \to \infty} 1/\beta_k = 0$$
 and $((1/\beta_k) x_{kj}^*)_j \in c_0^{w^*}(X^*)$

for every k, we see that $(z_m^*)_m \in c_0^{w^*}(X^*)$. Also, since $\sum_{k=1}^{\infty} \|(\beta_k y_{kn})_n\|_1^w < \infty$,

$$(z_m)_m \in \ell_1^w(Y)$$
. Consequently, $\sum_{m=1}^{\infty} z_m^* \underline{\otimes} z_m \in \mathcal{N}_{w\infty}(X,Y)$.

Note that if $\sum_{n=1}^{\infty} w_n^* \underline{\otimes} w_n \in \mathcal{N}_{w\infty}(X,Y)$, then for every $x \in X$, $\sum_{n=1}^{\infty} w_n^*(x) w_n$ unconditionally converges in Y. Hence for every $x \in X$,

$$\sum_{k=1}^{\infty} T_k x = \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} x_{kn}^*(x) y_{kn} = \sum_{m=1}^{\infty} z_m^*(x) z_m$$

and

$$\left\| \sum_{k=1}^{\infty} T_{k} \right\|_{\mathcal{N}_{w\infty}} \leq \|(z_{m}^{*})_{m}\|_{\infty} \|(z_{m})_{m}\|_{1}^{w} \leq (1+\varepsilon) \sum_{k=1}^{\infty} \|(y_{kn})_{n}\|_{1}^{w}$$
$$\leq (1+\varepsilon) \sum_{k=1}^{\infty} \left(\|T_{k}\|_{\mathcal{N}_{w\infty}} + \frac{\varepsilon}{2^{k}} \right).$$

Since $\varepsilon > 0$ was arbitrary, we have the desired conclusion. Also, for each $l \in \mathbb{N}$, we can apply the above argument to $\sum_{k \geq l} T_k$ to complete the proof for the case $p = \infty$.

The case p = 1: We can adopt the proof of the case $p = \infty$ by interchanging the roles of the sequences $(x_{kn}^*)_n$ and $(y_{kn})_n$ with each other.

The case $1 : We can use the proof of [4, Theorem 5.25] or [13, Proposition 8.9] for this case. <math>\Box$

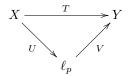
For every n, let e_n^* and e_n , respectively, be the standard unit vector bases in ℓ_{p^*} (c_0 when p=1) and ℓ_p (c_0 when $p=\infty$).

Proposition 2.2. Let $1 \leq p \leq \infty$ and let $T: X \to Y$ be a linear map. Then $T \in \mathcal{N}_{wp}(X,Y)$ if and only if there exist $R \in \mathcal{L}(X,\ell_p)$ and $S \in \mathcal{L}(\ell_p,Y)$ (ℓ_p is replaced by c_0 if $p = \infty$) such that T = SR. In this case, $||T||_{\mathcal{N}_{wp}} = \inf ||S|| ||R||$, where the infimum is taken over all such factorizations.

Proof. Let $T \in \mathcal{N}_{wp}(X,Y)$. Let $(x_n^*)_n \in \ell_p^w(X^*)$ and $(y_n)_n \in \ell_{p^*}^w(Y)$ such that

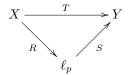
$$T = \sum_{n=1}^{\infty} x_n^* \underline{\otimes} y_n.$$

Consider the maps $U: X \to \ell_p$, $x \mapsto (x_n^*(x))_n$ and $V: \ell_p \to Y$, $(\alpha_n) \mapsto \sum_{n=1}^{\infty} \alpha_n y_n$. Then we see that $||U|| = ||(x_n^*)_n||_p^w$ and $||V|| = ||(y_n)_n||_{p^*}^w$, and the following diagram is commutative.



Since the weakly p-nuclear representation of T was arbitrary, inf $\|\cdot\| \|\cdot\| \le \|T\|_{\mathcal{N}_{wp}}$.

Let T have the following factorization.



Consider the sequences $(e_n^*R)_n$ in X^* and $(Se_n)_n$ in Y. Then it is easily seen that $\|(e_n^*R)_n\|_p^w = \|R\|$ and $\|(Se_n)_n\|_{p^*}^w = \|S\|$. It follows that

$$\sum_{n=1}^{\infty} e_n^* R \underline{\otimes} S e_n = SR = T.$$

Since the factorization of T was arbitrary, $||T||_{\mathcal{N}_{wp}} \leq \inf ||\cdot||| \cdot ||\cdot||$.

Lemma 2.3. Let 1 . Then for every Banach space <math>X, $\mathcal{N}_{wp}(X, \ell_p)$ (respectively, $\mathcal{N}_{wp}(\ell_p, X)$) is isometrically equal to $\mathcal{L}(X, \ell_p)$ (respectively, $\mathcal{L}(\ell_p, X)$). Here ℓ_p is replaced by c_0 when $p = \infty$.

Proof. Let $T \in \mathcal{L}(X, \ell_p)$. Consider the sequences $(e_n^*T)_n$ in X^* and $(e_n)_n$ in ℓ_p . Then we see that $(e_n^*T)_n \in \ell_p^w(X^*)$ and $(e_n)_n \in \ell_p^w(\ell_p)$. Moreover, $\|(e_n^*T)_n\|_p^w = \|T\|$ and $\|(e_n)_n\|_{p^*}^w = 1$. Hence $T = \sum_n e_n^* T \underline{\otimes} e_n \in \mathcal{N}_{wp}(X, \ell_p)$ and $\|T\|_{\mathcal{N}_{wp}} = \|T\|$.

and $||T||_{\mathcal{N}_{wp}} = ||T||$. To show the other part, let $S \in \mathcal{L}(\ell_p, X)$. Consider the sequences $(e_n^*)_n$ in ℓ_{p^*} and $(Se_n)_n$ in X. Then it is easily seen that

$$\|(e_n^*)_n\|_p^w = 1, \|(Se_n)_n\|_{p^*}^w = \|S\|, S = \sum_n e_n^* \underline{\otimes} Se_n.$$

Hence $S \in \mathcal{N}_{wp}(\ell_p, X)$ and $||S||_{\mathcal{N}_{wp}} = ||S||$.

Remark 2.4. Lemma 2.3 does not hold in general for the case p=1. Indeed, if $\mathcal{N}_{w1}(\ell_1,\ell_1)$ would be equal to $\mathcal{L}(\ell_1,\ell_1)$, then, since weakly 1-nuclear operators are weakly compact, by Schur's property, the identity map on ℓ_1 would be compact. This is a contradiction.

From Proposition 2.2 and Lemma 2.3, we have:

Corollary 2.5. Let $1 and let <math>T : X \to Y$ be a linear map. Then $T \in \mathcal{N}_{wp}(X,Y)$ if and only if there exist $R \in \mathcal{N}_{wp}(X,\ell_p)$ and $S \in \mathcal{N}_{wp}(\ell_p,Y)$ $(\ell_p \text{ is replaced by } c_0 \text{ if } p = \infty) \text{ such that } T = SR.$

Remark 2.6. For 1 , we see that weakly <math>p-nuclear operator is not always compact considering the fact that $\mathcal{N}_{wp}(\ell_p,\ell_p)$ is equal to $\mathcal{L}(\ell_p,\ell_p)$ by Lemma 2.3. Also weakly 1-nuclear operator is not compact in general. Indeed, let $(z_n)_n$ be a weakly null sequence in a Banach space Z such that the set $\{z_n\}_{n=1}^{\infty}$ is not compact. Consider the weakly 1-nuclear operator $T = \sum_{n=1}^{\infty} e_n \underline{\otimes} z_n$ from ℓ_1 to Z, where each e_n is the standard unit vector in c_0 . Then T cannot be compact.

3. The injective and surjective hulls of the ideal of weakly p-nuclear operators

Sinha and Karn [14] introduced a ideal \mathcal{K}_p of 'new' p-compact operators and its weak version. Let $1 \leq p \leq \infty$. A subset K of a Banach space X is called p-compact if there exists $(x_n)_n \in \ell_p(X)$ $(c_0(X)$ when $p = \infty)$ such that

$$K \subset p\text{-}co(x_n)_n := \Big\{ \sum_{n=1}^{\infty} \alpha_n x_n : (\alpha_n) \in B_{\ell_{p^*}} \Big\}.$$

We denote the unit ball of X by B_X and replace $B_{\ell_{p^*}}$ with B_{c_0} if p=1. For a linear map $T:Y\to X,\ T\in\mathcal{K}_p(Y,X)$ if $T(B_Y)$ is a p-compact subset of X. Delgado, Piñeiro, and Serrano [2] defined a norm on the space $\mathcal{K}_p(Y,X)$ as follows. For $T\in\mathcal{K}_p(Y,X)$, let

$$||T||_{\mathcal{K}_p} := \inf \{ ||(x_n)_n||_p : (x_n)_n \in \ell_p(X) \text{ and } T(B_Y) \subset p\text{-}co(x_n)_n \}.$$

Then $[\mathcal{K}_p, \|\cdot\|_{\mathcal{K}_p}]$ is a Banach operator ideal [3]. The ideal $[\mathcal{W}_p, \|\cdot\|_{\mathcal{W}_p}]$ of weakly p-compact operators is defined by replacing $\ell_p(X)$ and $c_0(X)$, respectively, by $\ell_p^w(X)$ and $c_0^w(X)$ in the definition of $[\mathcal{K}_p, \|\cdot\|_{\mathcal{K}_p}]$.

The surjective hull $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]^{sur}$ of an operator ideal $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ is defined as follows;

$$\mathcal{A}^{sur}(X,Y) := \{ T \in \mathcal{L}(X,Y) : Tq_X \in \mathcal{A}(\ell_1(B_X),Y) \},$$

where $q_X : \ell_1(B_X) \to X$ is the canonical quotient map, and $||T||_{\mathcal{A}^{sur}} := ||Tq_X||_{\mathcal{A}}$ for $T \in \mathcal{A}^{sur}(X,Y)$ (see [1, p. 113] and [12, Section 8.5]). The following lemma is well known (cf. [12, Proposition 8.5.4]).

Lemma 3.1. Let $[A, \|\cdot\|_A]$ be a Banach operator ideal and let X and Y be Banach spaces. A linear map $T \in \mathcal{A}^{sur}(X,Y)$ if and only if there exist a Banach space Z and an $S \in \mathcal{A}(Z,Y)$ such that $T(B_X) \subset S(B_Z)$. In this case,

$$||T||_{\mathcal{A}^{sur}} = \inf ||S||_{\mathcal{A}},$$

where the infimum is taken over all such inclusions.

Theorem 3.2. Let $1 \le p \le \infty$ and let X and Y be Banach spaces. A linear map $T \in \mathcal{N}^{sur}_{wp}(X,Y)$ if and only if $T \in \mathcal{W}_{p^*}(X,Y)$. In this case, $||T||_{\mathcal{N}^{sur}_{wp}} =$ $||T||_{\mathcal{W}_{n^*}}$.

Proof. Let $T \in \mathcal{N}^{sur}_{wp}(X,Y)$. Then $Tq_X \in \mathcal{N}_{wp}(\ell_1(B_X),Y)$. Let

$$Tq_X = \sum_{n=1}^{\infty} (\zeta_x^n)_x \underline{\otimes} y_n$$

be a weakly p-nuclear representation. Then

$$T(B_X) = \left\{ \sum_{n=1}^{\infty} \zeta_x^n y_n : x \in B_X \right\} \subset p^* - co(\|((\zeta_x^k)_x)_k\|_p^w y_n)_n.$$

Hence $T \in \mathcal{W}_{p^*}(X,Y)$ and $\|T\|_{\mathcal{W}_{p^*}} \leq \|((\zeta_x^n)_x)_n\|_p^w\|(y_n)_n\|_{p^*}^w$. Since the representation was arbitrary, $\|T\|_{\mathcal{W}_{p^*}} \leq \|Tq_X\|_{\mathcal{N}_{wp}} = \|T\|_{\mathcal{N}_{wp}^{sur}}$.

In other to show the converse, let $T \in \mathcal{W}_{p^*}(X,Y)$. Let $\varepsilon > 0$ be given. Then

there exists $(y_n)_n \in \ell_{p^*}^w(Y)$ with $\|(y_n)_n\|_{p^*}^w \leq \|T\|_{\mathcal{W}_{p^*}} + \varepsilon$ such that

$$T(B_X) \subset p^*$$
- $co(y_n)_n$.

Consider the map $S: \ell_p \to Y \ (c_0 \to Y \text{ when } p = \infty)$ defined by

$$S = \sum_{n=1}^{\infty} e_n^* \underline{\otimes} y_n,$$

where $(e_n^*)_n$ is the sequence of standard unit vectors in ℓ_{p^*} $(e_n^* \in c_0 \subset \ell_{\infty})$ when p=1). Then we see that $S \in \mathcal{N}_{wp}(\ell_p, Y)$ and

$$T(B_X) \subset p^*$$
- $co(y_n)_n = S(B_{\ell_n}).$

Hence by Lemma 3.1, $T \in \mathcal{N}^{sur}_{wp}(X,Y)$ and

$$||T||_{\mathcal{N}_{wn}^{sur}} \le ||S||_{\mathcal{N}_{wp}} \le ||(y_n)_n||_{p^*}^w \le ||T||_{\mathcal{W}_{p^*}} + \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, we complete the proof.

It was shown in [3, Proposition 3.11] that $[\mathcal{N}^p, \|\cdot\|_{\mathcal{N}^p}]^{sur} = [\mathcal{K}_p, \|\cdot\|_{\mathcal{K}_p}]$. We may use the proof of Theorem 3.2 to show that result. The ideal $[\mathcal{K}_{up}, \| \cdot \|_{\mathcal{K}_{up}}]$ of unconditionally p-compact operators is defined by replacing $\ell_p(X)$ by $\ell_p^u(X)$ in the definition of $[\mathcal{K}_p, \|\cdot\|_{\mathcal{K}_p}]$. It was shown in [5, Theorem 4.5] and [10, Proposition 3.1] that $[\mathfrak{K}_p, \|\cdot\|_{\mathfrak{K}_p}]^{sur} = [\mathcal{K}_{up^*}, \|\cdot\|_{\mathcal{K}_{up^*}}]$.

Persson and Pietsch [11] introduced a weaker notion of the p-nuclear operator. For $1 \leq p \leq \infty$, a linear map $T: X \to Y$ is called quasi p-nuclear if there

exists $(x_n^*)_n \in \ell_p(X^*)$ $(c_0(X^*)$ when $p = \infty)$ such that $||Tx|| \leq ||(x_n^*(x))_n||_p$ for every $x \in X$. We denote the space of all quasi p-nuclear operators from X to Y by $\mathcal{N}_p^Q(X,Y)$. For $T \in \mathcal{N}_p^Q(X,Y)$, let $||T||_{\mathcal{N}_p^Q} := \inf ||(x_n^*)_n||_p$, where the infimum is taken over all such inequalities. Then $[\mathcal{N}_p^Q, ||\cdot||_{\mathcal{N}_p^Q}]$ is a Banach operator ideal [11]. The ideal $[\mathcal{N}_{wp}^Q, ||\cdot||_{\mathcal{N}_{wp}^Q}]$ of quasi weakly p-nuclear operators is defined by replacing $\ell_p(X^*)$ and $c_0(X^*)$, respectively, by $\ell_p^w(X^*)$ and $c_0^{w^*}(X^*)$ in the definition of $[\mathcal{N}_p^Q, ||\cdot||_{\mathcal{N}_p^Q}]$.

The injective hull $[A, \|\cdot\|_A]^{inj}$ of an operator ideal $[A, \|\cdot\|_A]$ is defined as follows;

$$\mathcal{A}^{inj}(X,Y) := \{ T \in \mathcal{L}(X,Y) : I_Y T \in \mathcal{A}(X,\ell_\infty(B_{Y^*})) \},$$

where $I_Y: Y \to \ell_{\infty}(B_{Y^*})$ is the canonical isometry, and $||T||_{\mathcal{A}^{inj}} := ||I_Y T||_{\mathcal{A}}$ for $T \in \mathcal{A}^{inj}(X,Y)$ (see [1, p. 112] and [12, Section 8.4]).

Theorem 3.3. Let $1 \leq p \leq \infty$ and let X and Y be Banach spaces. A linear map $T \in \mathcal{N}^{inj}_{wp}(X,Y)$ if and only if $T \in \mathcal{N}^{Q}_{wp}(X,Y)$. In this case, $\|T\|_{\mathcal{N}^{inj}_{wp}} = \|T\|_{\mathcal{N}^{Q}_{wp}}$.

Recall that a Banach space Z is called *injective* if for every Banach space W and every subspace W_0 of W, any $T \in \mathcal{L}(W_0, Z)$ has an extension $\widehat{T} \in \mathcal{L}(W, Z)$ with $||T|| = ||\widehat{T}||$. It is well known that ℓ_{∞} -spaces are injective.

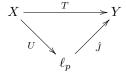
Lemma 3.4. Let $1 \leq p \leq \infty$. Suppose that Y is injective. If $T \in \mathcal{N}_{wp}^Q(X,Y)$, then $T \in \mathcal{N}_{wp}(X,Y)$ and $\|T\|_{\mathcal{N}_{wp}} = \|T\|_{\mathcal{N}_{wp}^Q}$.

Proof. Note that if $T \in \mathcal{N}_{wp}(X,Y)$, then $T \in \mathcal{N}_{wp}^Q(X,Y)$ and $||T||_{\mathcal{N}_{wp}^Q} \leq ||T||_{\mathcal{N}_{wp}}$.

Now, let $T \in \mathcal{N}_{wp}^Q(X,Y)$ and let $\varepsilon > 0$ be given. Let $(x_n^*) \in \ell_p^w(X^*)$ be such that for every $x \in X$, $||Tx|| \le ||(x_n^*(x))_n||_p$ and $||(x_n^*)_n||_p^w \le ||T||_{\mathcal{N}_{wp}^Q} + \varepsilon$. Let us consider the linear subspace

$$Z := \{ (x_n^*(x))_n : x \in X \}$$

of ℓ_p (c_0 when $p=\infty$) and the map $J:Z\to Y$ via $(x_n^*(x))_n\mapsto Tx$. Then it follows that J is well defined and linear, and $\|J\|\le 1$. Since Y is injective, there exists an extension $\hat{J}:\ell_p\to Y$ of J with $\|\hat{J}\|=\|J\|$. Define the operator $U:X\to\ell_p$ by $Ux=(x_n^*(x))_n$. Then the following diagram is commutative.



Hence by Proposition 2.2, $T \in \mathcal{N}_{wp}(X,Y)$ and $||T||_{\mathcal{N}_{wp}} \leq ||U|||\hat{J}|| \leq ||(x_n^*)_n||_p^w \leq ||T||_{\mathcal{N}_{wp}^Q} + \varepsilon$. Since $\varepsilon > 0$ was arbitrary, $||T||_{\mathcal{N}_{wp}} \leq ||T||_{\mathcal{N}_{wp}^Q}$.

Proof of Theorem 3.3. If $T \in \mathcal{N}^{inj}_{wp}(X,Y)$, then $I_Y T \in \mathcal{N}_{wp}(X,\ell_{\infty}(B_{Y^*}))$. We see that $T \in \mathcal{N}^Q_{wp}(X,Y)$ and

$$||T||_{\mathcal{N}_{w_n}^Q} \le ||I_Y T||_{\mathcal{N}_{w_p}} = ||T||_{\mathcal{N}_{w_n}^{inj}}.$$

Conversely, if $T \in \mathcal{N}^Q_{wp}(X,Y)$, then $I_Y T \in \mathcal{N}^Q_{wp}(X,\ell_{\infty}(B_{Y^*}))$. By Lemma 3.4, $I_Y T \in \mathcal{N}_{wp}(X,\ell_{\infty}(B_{Y^*}))$ and

$$||T||_{\mathcal{N}_{wp}^{inj}} = ||I_Y T||_{\mathcal{N}_{wp}} = ||T||_{\mathcal{N}_{wp}^Q}.$$

The above argument also shows that $[\mathcal{N}_p, \|\cdot\|_{\mathcal{N}_p}]^{inj} = [\mathcal{N}_p^Q, \|\cdot\|_{\mathcal{N}_p^Q}]$. The ideal $[\mathcal{N}_{up}^Q, \|\cdot\|_{\mathcal{N}_{up}^Q}]$ of quasi unconditionally p-nuclear operators is defined by replacing $\ell_p(X^*)$ by $\ell_p^u(X^*)$ in the definition of $[\mathcal{N}_p^Q, \|\cdot\|_{\mathcal{N}_p^Q}]$. It was shown in [5, Theorem 4.4] that $[\mathfrak{K}_p, \|\cdot\|_{\mathfrak{K}_p}]^{inj} = [\mathcal{N}_{up}^Q, \|\cdot\|_{\mathcal{N}_{up}^Q}]$.

We now consider the duality relationship between \mathcal{N}_{wp}^{inj} and \mathcal{N}_{wp}^{sur} as in [3, Corollary 3.4].

Lemma 3.5. For every Banach space X, we have:

- (a) For $1 \le p < \infty$, if $(x_n)_n \in \ell_p^w(X)$, then the set $p\text{-}co(x_n)_n$ is balanced, convex and weakly compact.
- (b) If $(x_n)_n \in c_0^w(X)$ (respectively, $(x_n^*)_n \in c_0^{w^*}(X^*)$), then the set $\{\sum_{n=1}^{\infty} \alpha_n x_n : (\alpha_n) \in B_{\ell_1}\}$ (respectively, $\{\sum_{n=1}^{\infty} \alpha_n x_n^* : (\alpha_n) \in B_{\ell_1}\}$) is equal to the closed balanced convex hull $\overline{bco}\{x_n\}_{n=1}^{\infty}$ (respectively, the weak* closed balanced convex hull $\overline{bco}^{w^*}\{x_n^*\}_{n=1}^{\infty}$) of $\{x_n\}_{n=1}^{\infty}$ (respectively, $\{x_n^*\}_{n=1}^{\infty}$).

Proof. (a) Clearly the set $p\text{-}co(x_n)_n$ is balanced and convex. Let

$$(\sum_{n=1}^{\infty} \alpha_n^k x_n)_{k=1}^{\infty}$$

be a sequence in $\{\sum_{n=1}^{\infty} \alpha_n x_n : (\alpha_n) \in B_{\ell_{p^*}}\}$. By the diagonal process, there exist a subsequence $(\sum_{n=1}^{\infty} \alpha_n^{k_l} x_n)_{l=1}^{\infty}$ of $(\sum_{n=1}^{\infty} \alpha_n^k x_n)_{k=1}^{\infty}$ and $(\beta_n) \in B_{\ell_{p^*}}$ such that for each $n, \alpha_n^{k_l} \longrightarrow \beta_n$ as $l \to \infty$. Then for every $x^* \in X^*$, we have

$$\left| x^* \left(\sum_{n=1}^{\infty} \alpha_n^{k_l} x_n - \sum_{n=1}^{\infty} \beta_n x_n \right) \right|$$

$$\leq \sum_{n \leq N} |\alpha_n^{k_l} - \beta_n| |x^*(x_n)| + \sum_{n > N} |\alpha_n^{k_l}| |x^*(x_n)| + \sum_{n > N} |\beta_n| |x^*(x_n)|$$

$$\leq \sum_{n \leq N} |\alpha_n^{k_l} - \beta_n| |x^*(x_n)| + 2 \left(\sum_{n > N} |x^*(x_n)|^p \right)^{\frac{1}{p}}.$$

Hence it follows that

$$\sum_{n=1}^{\infty} \alpha_n^{k_l} x_n \text{ weakly converges to } \sum_{n=1}^{\infty} \beta_n x_n \in \left\{ \sum_{n=1}^{\infty} \alpha_n x_n : (\alpha_n) \in B_{\ell_{p^*}} \right\}$$

as $l \to \infty$.

(b) We only show the case $c_0^{w^*}(X^*)$. Clearly the set $\{\sum_{n=1}^{\infty} \alpha_n x_n^* : (\alpha_n) \in \{\sum_{n=1}^{\infty} \alpha_n x_n^* : (\alpha_n) \in \{\sum_{$ B_{ℓ_1} is contained in $\overline{bco}^{w^*}\{x_n^*\}_{n=1}^{\infty}$, and that set is balanced and convex. So

we only need to show that the set is $weak^*$ compact. Now, let $(\sum_{n=1}^{\infty} \alpha_n^{\gamma} x_n^*)$ be a net in $\{\sum_{n=1}^{\infty} \alpha_n x_n^* : (\alpha_n) \in B_{\ell_1}\}$. By Tychonoff's Theorem, we may assume that for every n, there exists a scalar β_n such that $\lim_{\gamma} \alpha_n^{\gamma} = \beta_n$. Also we see that $(\beta_n)_n \in B_{\ell_1}$. Then for every $x \in X$,

$$\begin{split} & \left| \left(\sum_{n=1}^{\infty} \alpha_n^{\gamma} x_n^* - \sum_{n=1}^{\infty} \beta_n x_n^* \right) (x) \right| \\ & \leq \sum_{n \leq N} |\alpha_n^{\gamma} - \beta_n| |x_n^*(x)| + \sum_{n > N} |\alpha_n^{\gamma}| |x_n^*(x)| + \sum_{n > N} |\beta_n| |x_n^*(x)|. \end{split}$$

Since $(x_n^*)_n$ is a $weak^*$ null sequence, $\sum_{n=1}^{\infty} \alpha_n^{\gamma} x_n^* weak^*$ converges to $\sum_n \beta_n x_n^*$ and so we complete the proof.

By [3, Propositions 3.1 and 3.2] including the case $p = \infty$ and Lemma 3.5, we have:

Corollary 3.6. Let $1 \le p < \infty$ and let $T: X \to Y$ be a linear map.

- (a) If $(y_n) \in \ell_n^w(Y)$, then $T(B_X) \subset p\text{-}co(y_n)_n$ if and only if $||T^*y^*|| \leq$ $\|(y^*(y_n))_n\|_p^p$ for every $y^* \in Y^*$.
- (b) If $(y_n) \in c_0^w(Y)$, then $T(B_X) \subset \infty$ -co $(y_n)_n$ if and only if $||T^*y^*|| \le$ $\|(y^*(y_n))_n\|_{\infty}$ for every $y^* \in Y^*$.
- (c) If $(x_n^*) \in \ell_p^w(X^*)$, then $T^*(B_{Y^*}) \subset p\text{-}co(x_n^*)_n$ if and only if $||Tx|| \leq ||(x_n^*(x))_n||_p$ for every $x \in X$.
- (d) If $(x_n^*) \in c_0^{w^*}(X^*)$, then $T^*(B_{Y^*}) \subset \infty \text{-}co(x_n^*)_n$ if and only if $||Tx|| \le$ $\|(x_n^*(x))_n\|_{\infty}$ for every $x \in X$.

From Corollary 3.6, we have:

Theorem 3.7. Let X and Y be Banach spaces and let $T: X \to Y$ be a linear map.

- (a) For $1 \leq p < \infty$, $T \in \mathcal{N}_{wp}^Q(X,Y)$ if and only if $T^* \in \mathcal{W}_p(Y^*,X^*)$. In this case, $||T||_{\mathcal{N}_{wp}^{Q}} = ||T^{*}||_{\mathcal{W}_{p}}.$ (b) If $T^{*} \in \mathcal{W}_{\infty}(Y^{*}, X^{*})$, then $T \in \mathcal{N}_{w\infty}^{Q}(X, Y)$ and $||T||_{\mathcal{N}_{w\infty}^{Q}} \leq ||T^{*}||_{\mathcal{W}_{\infty}}.$
- (c) For $1 \leq p \leq \infty$, if $T \in \mathcal{W}_p(X,Y)$, then $T^* \in \mathcal{N}_{wp}^{\mathbb{Q}}(Y^*,X^*)$ and $||T^*||_{\mathcal{N}_{w_n}^Q} \leq ||T||_{\mathcal{W}_p}.$

4. The maximal hull and minimal kernel of the ideal of weakly *p*-nuclear operators

A Banach operator ideal $[A, \|\cdot\|_A]$ is said to be associated to a tensor norm α if the canonical map from $\mathcal{A}(M,N)$ to the tensor product $M^* \otimes_{\alpha} N$ for every finite-dimensional normed spaces M and N is an isometry.

A tensor norm α is called *right-injective* if for every isometry $I: Y \to Z$, the operator

$$id_X \otimes I : X \otimes_{\alpha} Y \to X \otimes_{\alpha} Z$$

is an isometry for all Banach spaces X, Y, Z, where id_X is the identity map on X. If the transposed tensor norm α^t of α is right-injective, then the tensor norm α is called *left-injective*. It is well known that there exist the unique largest right-injective tensor norm α and left-injective tensor norm α smaller than a tensor norm α (cf. [1, Theorem 20.7]).

Let $1 \leq p \leq \infty$. For $u \in X \otimes Y$, define

$$w_p(u) = \inf \Big\{ \|(x_j)_j\|_p^w \|(y_j)_j\|_{p^*}^w : u = \sum_{j=1}^n x_j \otimes y_j, n \in \mathbb{N} \Big\}.$$

Then w_p is a finitely generated tensor norm (cf. [1, Section 12]) and \mathfrak{K}_p is associated to w_p (cf. [1, Sections 17.12 and 22.3]).

Recall that $\ell_p^w(N) = \ell_p^u(N)$ $(1 \le p < \infty)$ and $c_0^w(N) = c_0(N)$, $c_0^{w^*}(N^*) = c_0(N)$ $c_0(N^*)$ for every finite-dimensional normed space N.

Proposition 4.1. Let $1 \le p \le \infty$.

- (a) The ideal $[\mathcal{N}_{wp}, \| \cdot \|_{\mathcal{N}_{wp}}]$ is associated to the tensor norm w_p . (b) The ideal $[\mathcal{N}_{wp}, \| \cdot \|_{\mathcal{N}_{wp}}]^{sur}$ is associated to the tensor norm $/w_p$. (c) The ideal $[\mathcal{N}_{wp}, \| \cdot \|_{\mathcal{N}_{wp}}]^{inj}$ is associated to the tensor norm $w_p \setminus$.

Proof. (a) For every finite-dimensional normed spaces M and N, we have the following isometries;

$$M^* \otimes_{w_p} N \to \mathfrak{K}_p(M,N) \to \mathcal{N}_{wp}(M,N).$$

- (b) From Theorem 3.2 and [10, Proposition 3.3], we have the conclusion.
- (c) Let β be a finitely generated tensor norm associated to $[\mathcal{N}_{wp}, \|\cdot\|_{\mathcal{N}_{wp}}]^{inj}$. Then by [8, Lemma 3.2(b)], β is right injective. We use [1, Proposition 20.9(2), (3) to show that $\beta = w_p \setminus$. Let M be a finite-dimensional normed space and let $n \in \mathbb{N}$. Then we have the following isometries;

$$M \otimes_{\beta} \ell_{\infty}^{n} \to \mathcal{N}_{wp}^{inj}(M^{*}, \ell_{\infty}^{n}) \to \mathcal{N}_{wp}(M^{*}, \ell_{\infty}^{n}) \to M \otimes_{w_{p}} \ell_{\infty}^{n}.$$
Hence $\beta = w_{p} \setminus$.

Let $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ be a Banach operator ideal. For $T \in \mathcal{L}(X, Y)$, let

 $||T||_{\mathcal{A}^{\max}} := \sup\{||q_L T I_M||_{\mathcal{A}} : M \text{ is a finite-dimensional subspace of } X,$

L is a cofinite-dimensional subspace of Y,

where $I_M: M \to X$ is the inclusion map and $q_L: Y \to Y/L$ is the quotient map, and let

$$\mathcal{A}^{\max}(X,Y) := \{ T \in \mathcal{L}(X,Y) : ||T||_{\mathcal{A}^{\max}} < \infty \}.$$

Then we call $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]^{\max} := [\mathcal{A}^{\max}, \|\cdot\|_{\mathcal{A}^{\max}}]$ the maximal hull of $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$. If $[A, \|\cdot\|_A] = [A, \|\cdot\|_A]^{\max}$, then $[A, \|\cdot\|_A]$ is called maximal.

The minimal kernel of $[A, \|\cdot\|_A]$ is defined by

$$[\mathcal{A},\|\cdot\|_{\mathcal{A}}]^{\min}:=[\overline{\mathcal{F}}\circ\mathcal{A}\circ\overline{\mathcal{F}},\|\cdot\|_{\overline{\mathcal{F}}\circ\mathcal{A}\circ\overline{\mathcal{F}}}],$$

where $\overline{\mathcal{F}}$ is the ideal of approximable operators. $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ is called *minimal* if $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}] = [\mathcal{A}, \|\cdot\|_{\mathcal{A}}]^{\min}.$

A Banach operator ideal $[A, \|\cdot\|_A]$ is called *right-accessible* if for all finitedimensional normed space M, Banach space Y, $T \in \mathcal{L}(M,Y)$ and $\varepsilon > 0$, there exist a finite-dimensional subspace N of Y and an $S \in \mathcal{L}(M,N)$ such that $T = I_N S$ and $||S||_{\mathcal{A}} \leq (1 + \varepsilon) ||T||_{\mathcal{A}}$.

 $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ is called *left-accessible* if for all Banach space X, finite-dimensional normed space $N, T \in \mathcal{L}(X, N)$ and $\varepsilon > 0$, there exist a cofinite-dimensional subspace L of X and an $S \in \mathcal{L}(X/L, N)$ such that $T = Sq_L$ and $||S||_{\mathcal{A}} \leq (1 + 1)$ ε) $||T||_{\mathcal{A}}$. A left- and right-accessible Banach operator ideal is called accessible.

 $[\mathcal{A}, \|\cdot\|_A]$ is called totally accessible if for all Banach spaces X and Y, finite rank $T \in \mathcal{L}(X,Y)$ and $\varepsilon > 0$, there exist a cofinite-dimensional subspace L of X, finite-dimensional subspace N of Y and an $S \in \mathcal{L}(X/L, N)$ such that $T = I_N Sq_L$ and $||S||_{\mathcal{A}} \leq (1+\varepsilon)||T||_{\mathcal{A}}$.

Corollary 4.2. Let $1 \le p \le \infty$.

- (a) $[\mathcal{N}_{wp}, \|\cdot\|_{\mathcal{N}_{wp}}]^{\max}$, $[\mathcal{N}_{wp}, \|\cdot\|_{\mathcal{N}_{wp}}]$ and $[\mathcal{N}_{wp}, \|\cdot\|_{\mathcal{N}_{wp}}]^{\min}$ are all accessible. (b) $([\mathcal{N}_{wp}, \|\cdot\|_{\mathcal{N}_{wp}}]^{sur})^{\max}$, $[\mathcal{N}_{wp}, \|\cdot\|_{\mathcal{N}_{wp}}]^{sur}$ and $([\mathcal{N}_{wp}, \|\cdot\|_{\mathcal{N}_{wp}}]^{sur})^{\min}$ are all totally accessible.
- (c) $([\mathcal{N}_{wp}, \|\cdot\|_{\mathcal{N}_{wp}}]^{inj})^{\max}$, $[\mathcal{N}_{wp}, \|\cdot\|_{\mathcal{N}_{wp}}]^{inj}$ and $([\mathcal{N}_{wp}, \|\cdot\|_{\mathcal{N}_{wp}}]^{inj})^{\min}$ are all totally accessible.

Proof. (a) By Proposition 4.1(a) and [1, Proposition 21.3, Theorem 21.5(a) and Ex. 21.2(b)].

- (b) By Proposition 4.1(b) and [1, the symmetric version of Proposition 21.1(2)].
 - (c) By Proposition 4.1(c) and [1, Proposition 21.1(2)].

We denote the *ideal of p-factorable operators* by \mathcal{L}_p (see [1, Section 18]). Then \mathcal{L}_p is maximal and it is associated to w_p (see [1, Section 17.12]).

Corollary 4.3. Let $1 \le p \le \infty$.

- $\begin{array}{ll} \text{(a)} & [\mathcal{N}_{wp}, \|\cdot\|_{\mathcal{N}_{wp}}]^{\max} = [\mathcal{L}_p, \|\cdot\|_{\mathcal{L}_p}] \ \ and \ [\mathcal{N}_{wp}, \|\cdot\|_{\mathcal{N}_{wp}}]^{\min} = [\mathfrak{K}_p, \|\cdot\|_{\mathfrak{K}_p}]. \\ \text{(b)} & ([\mathcal{N}_{wp}, \|\cdot\|_{\mathcal{N}_{wp}}]^{sur})^{\max} = [\mathcal{L}_p, \|\cdot\|_{\mathcal{L}_p}]^{sur} \ \ and \ (\mathcal{N}_{wp}^{sur})^{\min}(X,Y) \ \ is \ isometric \ to \ X^* \hat{\otimes}_{/w_p} Y \ \ for \ all \ Banach \ spaces \ X \ \ and \ Y. \\ \text{(c)} & ([\mathcal{N}_{wp}, \|\cdot\|_{\mathcal{N}_{wp}}]^{inj})^{\max} = [\mathcal{L}_p, \|\cdot\|_{\mathcal{L}_p}]^{inj} \ \ and \ (\mathcal{N}_{wp}^{inj})^{\min}(X,Y) \ \ is \ isometric \ \ to \ X^* \hat{\otimes}_{w_p} Y \ \ for \ \ all \ Banach \ spaces \ X \ \ and \ Y. \end{array}$

Proof. (a) By uniqueness of maximal and minimal operator ideals associated to finitely generated tensor norms.

(b) and (c): By Proposition 4.1(b), (c) and [1, Theorem 20.11(1), (2)], the first parts hold. By [1, Corollary 22.2], the second parts hold.

Acknowledgement. The author would like to express a sincere gratitude to the referee for valuable comments. This work was supported by NRF-2018R1D1A1B07043566, funded by the Korean Government.

References

- [1] A. Defant and K. Floret, *Tensor Norms and Operator Ideals*, North-Holland Mathematics Studies, 176, North-Holland Publishing Co., Amsterdam, 1993.
- [2] J. M. Delgado, C. Piñeiro, and E. Serrano, Density of finite rank operators in the Banach space of p-compact operators, J. Math. Anal. Appl. 370 (2010), no. 2, 498–505.
- [3] _____, Operators whose adjoints are quasi p-nuclear, Studia Math. 197 (2010), no. 3, 291–304.
- [4] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995.
- [5] J. H. Fourie, Injective and surjective hulls of classical p-compact operators with application to unconditionally p-compact operators, Studia Math. 240 (2018), no. 2, 147–159.
- [6] J. Fourie and J. Swart, Banach ideals of p-compact operators, Manuscripta Math. 26 (1978/79), no. 4, 349–362.
- [7] _____, Tensor products and Banach ideals of p-compact operators, Manuscripta Math. 35 (1981), no. 3, 343–351.
- [8] D. Galicer, S. Lassalle, and P. Turco, *The ideal of p-compact operators: a tensor product approach*, Studia Math. **211** (2012), no. 3, 269–286.
- [9] J. M. Kim, Unconditionally p-null sequences and unconditionally p-compact operators, Studia Math. 224 (2014), no. 2, 133–142.
- [10] ______, The ideal of unconditionally p-compact operators, Rocky Mountain J. Math. 47 (2017), no. 7, 2277–2293.
- [11] A. Persson and A. Pietsch, p-nukleare une p-integrale Abbildungen in Banachräumen, Studia Math. 33 (1969), 19–62.
- [12] A. Pietsch, Operator Ideals, translated from German by the author, North-Holland Mathematical Library, 20, North-Holland Publishing Co., Amsterdam, 1980.
- [13] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, 38, Longman Scientific & Technical, Harlow, 1989.
- [14] D. P. Sinha and A. K. Karn, Compact operators whose adjoints factor through subspaces of l_p, Studia Math. 150 (2002), no. 1, 17–33.

JU MYUNG KIM
DEPARTMENT OF MATHEMATICS
SEJONG UNIVERSITY
SEOUL 05006, KOREA

 $Email\ address:$ kjm21@sejong.ac.kr