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ELLIPTIC OBSTACLE PROBLEMS WITH MEASURABLE

NONLINEARITIES IN NON-SMOOTH DOMAINS

Youchan Kim and Seungjin Ryu

Abstract. The Calderón-Zygmund type estimate is proved for elliptic

obstacle problems in bounded non-smooth domains. The problems are
related to divergence form nonlinear elliptic equation with measurable

nonlinearities. Precisely, nonlinearity a(ξ, x1, x′) is assumed to be only

measurable in one spatial variable x1 and has locally small BMO semi-
norm in the other spatial variables x′, uniformly in ξ variable. Regarding

non-smooth domains, we assume that the boundaries are locally flat in the
sense of Reifenberg. We also investigate global regularity in the settings of

weighted Orlicz spaces for the weak solutions to the problems considered

here.

1. Introduction and main result

Let Ω be a bounded domain in Rn (n ≥ 2) with a non-smooth boundary ∂Ω.
Given an obstacle ψ ∈ H1(Ω) with ψ ≤ 0 a.e. on ∂Ω, we define the admissible
set for the test functions:

A =
{
φ ∈ H1

0 (Ω) : φ ≥ ψ a.e. in Ω
}
.

We are interested in functions u : Ω → R belonging in A and satisfying the
following variational inequality:

(1.1)

∫
Ω

a(Du, x) ·D (φ− u) dx ≥
∫

Ω

F ·D (φ− u) dx

for all φ ∈ A, where F = {fi} ∈ L2(Ω;Rn). Here, the symbol · represents
the standard inner product in Rn. Such a function u is called a weak solution
to the variational inequality (1.1). Throughout this paper, we assume that
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nonlinearity a = a(ξ, x) : Rn × Rn → Rn is measurable in x and differentiable
in ξ, and satisfies the following strict monotonicity and uniform boundedness:

(1.2)

{
λ|ξ − η|2 ≤ [a(ξ, x)− a(η, x)] · (ξ − η),

|a(ξ, x)|+ |ξ||Dξa(ξ, x)| ≤ Λ|ξ|

for all x, ξ, η ∈ Rn and some constants 0 < λ ≤ 1 ≤ Λ < ∞. With these
basic continuity assumptions, we further assume that for each point and for
each scale, nonlinearity a(ξ, x1, x

′) is allowed to be merely measurable in one
spatial variable x1 and has locally small BMO semi-norm in the other spatial
variables x′ while the boundaries are trapped between two narrow strips.

According to the classical theory of the variational inequalities ([5, 7, 20]),
there exists a unique weak solution u ∈ A of (1.1), with the estimate

||Du||L2(Ω;Rn) ≤ c
(
||F ||L2(Ω;Rn) + ||Dψ||L2(Ω;Rn)

)
,

where the positive constant c is depending only on λ,Λ, n, and |Ω|. We further
refer the reader to the texts written by Kinderlehrer-Stampacchia [20], Fried-
man [18] and Rodrigues [28] for further discussions about the classical theory
and its application of variational inequalities.

In this paper we consider an optimal Calderón-Zygmund type estimate for
the weak solution to the variational inequality (1.1). We are interested in
studying how the integrability of F and Dψ is reflected to the integrability of
the gradient of solutions, under minimal regularity assumptions on the nonlin-
earity a(ξ, x) and the smoothness requirement on the domain Ω. In general,
the following W 1,p estimates:

(1.3) ‖Du‖Lp(Ω;Rn) ≤ c
(
‖F‖Lp(Ω;Rn) + ‖Dψ‖Lp(Ω;Rn)

)
holds true only for p ∈ (2− ε, 2 + ε), where ε is a small positive constant. Here,
the constant c is independent of u, F , and Dψ, see [1]. On the contrary, to hold
(1.3) for any value of p in the range [2 + ε,∞) requires additional assumptions
on both a(ξ, x) and Ω. In that sense, it provides a natural extension of the
previous result [8] which studied divergence form nonlinear elliptic equations
without obstacles.

There are many other results in the literature regarding the optimal Calderón
-Zygmund type estimate of nonlinear elliptic and parabolic obstacle problems.
(See, for instance, [2, 4, 5, 7, 10, 11, 30–33].) In this paper, the nonlinearity
a(ξ, x1, x

′) is assumed to be only measurable in x1 variable and has locally
small bounded mean oscillation in x′ variables. (See Definition 1.1 for details.)
We would like to emphasize that, from the previous results [9,14–16,22–24], it
can be inferred that this measurable assumption is optimal.

In order to state the additional hypotheses on a(ξ, x) and ∂Ω we introduce
the following notation:

(1) x′ = (x2, . . . , xn) ∈ Rn−1 and x = (x1, x
′), y = (y1, y

′) ∈ R× Rn−1.
(2) B′r(y

′) = {x′ ∈ Rn−1 : |x′−y′| < r} and Qr(y) = (y1−r, y1+r)×B′r(y′).
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(3) Qr = Qr(0), Q+
r = Qr ∩ {x1 > 0} and Q−r = Qr ∩ {x1 < 0}.

(4) Ωr(y) = Ω ∩Qr(y) and ∂wΩr(y) = Qr(y) ∩ ∂Ω.
(5) −

∫
E
g dx = 1

|E|
∫
E
g dx, where g ∈ L1(E) and E is a measurable subset

in Rn with positive volume |E|.
(6) ḡE′(x1) = −

∫
E′
g(x1, x

′)dx′ = 1
|E′|

∫
E′
g(x1, x

′)dx′, where E′ is a bounded

measurable subset of Rn−1 and |E′| stands for the (n− 1)-dimensional
Lebesgue measure of E′.

To measure the oscillation of a(ξ, x1, x
′) in x1-variable on Qr(y1, y

′), uni-
formly in ξ ∈ Rn\{0}, we consider a function θ defined by

(1.4) θ(a, Qr(y))(x) = sup
ξ∈Rn\{0}

|a(ξ, x1, x
′)− āB′r(y′)(ξ, x1)|
|ξ|

,

where

āB′r(y′)(ξ, x1) = −
∫
B′r(y′)

a(ξ, x1, z
′) dz′.

We introduce the main assumptions on the nonlinearity a and the domain
Ω.

Definition 1.1. We say that (a(ξ, x),Ω) is (δ,R)-vanishing of codimension 1
if for every y ∈ Ω and for every number r ∈ (0, R] with

dist(y, ∂Ω) = min
z∈∂Ω

dist(y, z) >
√

2r,

there exists a coordinate system depending on y and r, whose variables are still
denoted by x = (x1, x

′), so that in this coordinate system y is the origin and

−
∫
Qr

|θ(a, Qr)(x)|2 dx ≤ δ2,

while, for every y ∈ Ω and for every number r ∈ (0, R] with

dist(y, ∂Ω) = min
z∈∂Ω

dist(y, z) = dist(y, z0) ≤
√

2r

for some z0 ∈ ∂Ω, there exists a coordinate system depending on y and r, whose
variables we still denote by x = (x1, x

′), so that

(1.5) Q+
r ⊂ Qr ∩ Ω ⊂ Qr ∩ {(x1, x

′) : x1 > −2δr}

and

−
∫
Qr

|θ(a, Qr)(x)|2 dx ≤ δ2.

We have a few comments about this definition.

Remark 1.2. (1) If (a(ξ, x),Ω) is (δ,R)-vanishing of codimension 1, then
for each point and for each small scale, there is a coordinate system such
that a(ξ, x1, x

′) might have big jumps in x1 variable but a(ξ, x1, x
′) is

in the class of BMO in x′ variables with small semi-norm.
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(2) The geometric condition (1.5) means that Ω satisfies the so-called
(δ,R)-Reifenberg flat condition. (See [26,35].) Moreover, it guarantees
the measure density, that is, there is a constant c∗ = c∗(δ, n, δ) > 0
such that

c∗ |Qr(z0)| ≤ |Qr(z0) ∩ Ω| ≤ (1− c∗)|Qr(z0)|

for each cylinder Qr(z0) with r ∈ (0, R) and z0 ∈ ∂Ω. Note that, in
fact, the constant c∗ can be uniformly bounded by choosing δ small
enough.

(3) Due to the scaling invariance property (see Lemma 2.3 below), one can
take for simplicity R = 1 or any other constants bigger than 1. On the
other hand, the constant δ is invariant under the scaling. It will be
determined later to belong to (0, 1/8).

Our main result is following:

Theorem 1.3. Let u ∈ A be the weak solution to the variational inequality
(1.1). For any given p ∈ (2,∞), suppose that F ∈ Lp(Ω;Rn) and Dψ ∈
Lp(Ω;Rn). Then there exists a constant δ = δ(λ,Λ, n, p) ∈ (0, 1/8) such that
if (a(ξ, x),Ω) is (δ, 25R)-vanishing of codimension 1, then Du ∈ Lp(Ω;Rn)
with the estimate (1.3). Here, the positive constant c in (1.3) depends only on
λ,Λ, n, p,R, and |Ω|.

The paper is organized as follows. In the next section we present some
auxiliary tools which play an important role in the rest of the paper. In Section
3 we give the W 1,2-approximation. In Section 4 we derive the required W 1,p-
estimate based on the Hardy-Littlewood maximal operator and the Calderón-
Zygmund-Krylov-Safonov-type covering lemma. In Section 5 we establish the
weighted Orlicz regularity estimates for the variational problems considered
here.

2. Preliminaries and auxiliary results

In this section, we summarize some results that will be crucially used in later
sections. These results are well-known or otherwise we provide appropriate ref-
erences. The main ingredients of our approach are the Hardy-Littlewood max-
imal operator, the Calderón-Zygmund-Krylov-Safonov type covering lemma,
and the global Lipschitz regularity for the so-called limiting equation.

We start this section by recalling the Hardy-Littlewood maximal operator
M. Given a locally integrable function g defined in Rn, the maximal function
Mg of g is

(Mg)(y) = sup
r>0
−
∫
Qr(y)

|g(x)| dx.

If g is defined on a bounded subset of Rn, then

Mg = Mg,
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where g is the zero extension of g from the bounded set to Rn. The following
weak type (1, 1) estimate

(2.1) |{x ∈ Rn : (Mg)(x) > λ}| ≤ c(n)

λ

∫
Rn
|g(y)| dy,

is well-known for the maximal operator M. Moreover, strong type (p, p) esti-
mate holds for p > 1; that is, for g ∈ Lp(Ω) there is a constant c = c(n, p) > 0
such that

(2.2)
1

c
‖g‖Lp(Rn) ≤ ‖Mg‖Lp(Rn) ≤ c‖g‖Lp(Rn).

We will need also the following standard measure theory results.

Lemma 2.1. Given p ∈ (1,∞), suppose that g is a nonnegative and measurable
function defined on a bounded subset Ω of Rn. Let µ > 0 and θ > 1 be constants.
Then

g ∈ Lp(Ω) ⇐⇒ S :=
∑
k≥1

θkp
∣∣{x ∈ Ω : g(x) > µθk

}∣∣ <∞
and

1

c
S ≤ ||g||pLp(Ω) ≤ c (|Ω|+ S)

with a positive constant c depending only on µ, θ, n, and p.

The following Calderón-Zygmund-Krylov-Safonov-type covering lemma plays
an important role in this paper. It may be proved in much same way as [8,27].

Lemma 2.2. Let Ω be a bounded domain in Rn satisfying (δ,R)-Reifenberg
flat condition (1.5). Let C and D be measurable sets with C ⊂ D ⊂ Ω. Suppose
that there exists a small constant ε ∈ (0, 1) such that

(1) for every y ∈ Ω, |C ∩QR(y)| < ε|QR(y)|,
(2) for each y ∈ Ω and r ∈ (0, R) one has that

Qr(y) ∩ Ω ⊂ D whenever |C ∩Qr(y)| ≥ ε|Qr(y)|.
Then

|C| ≤

(
20
√

2

1− δ

)n
ε |D|.

The obstacle problem considered here is invariant under scaling and normal-
ization, which follows by a direct computations.

Lemma 2.3. Let u ∈ A be the weak solution to the variational inequality (1.1).
Assume that (a(ξ, x),Ω) is (δ, R)-vanishing of codimension 1. Fix M > 1 and
0 < ρ < 1, and define the rescaled maps

ã(ξ, x) =
a(Mξ, ρx)

M
, ũ(x) =

u(ρx)

Mρ
, F̃ (x) =

F (ρx)

M
, ψ̃(x) =

ψ(ρx)

Mρ
,

and the set Ω̃ =
{

1
ρx : x ∈ Ω

}
.

Then
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(1) ã(ξ, x) satisfies the basic condition (1.2) with the same constants λ and
Λ.

(2)
(
ã(ξ, x), Ω̃

)
is (δ, Rρ )-vanishing of codimension 1.

(3) ũ ∈ Ã =
{
φ̃ ∈ H1

0 (Ω̃) : φ̃ ≥ ψ̃ a.e. in Ω̃
}

is the weak solution to the

variational inequality:∫
Ω̃

ã(ξ, x) ·D
(
φ̃− ũ

)
dx ≥

∫
Ω̃

F̃ ·D
(
φ̃− ũ

)
dx, ∀φ̃ ∈ Ã.

We need the following comparison estimates. The proof can be found in
[7, Lemma 3.5].

Lemma 2.4. Suppose that v, ṽ ∈ H1(Ω) satisfy{
− div a(Dv, x) ≤ − div a(Dṽ, x) in Ω,

v ≤ ṽ on ∂Ω.

Then we have that v ≤ ṽ a.e. in Ω.

The next lemma is the Lipschitz regularity of the so-called limiting equations
with zero Dirichlet boundary data. It may be driven by [8, Lemma 4.10] with
slight modifications. For the further references about the regularity results in
obstacle problems, we refer to [3,12,13,19] for the gradients Hölder continuity
results and [25] for the gradient continuity result.

Lemma 2.5. Let v be a weak solution of{
−div āB′3r (Dv, x1) = 0 in Q+

3r,

v = 0 on Q+
3r ∩ {x1 = 0},

where (1.2) is assumed on āB′3r (ξ, x1). Then we have the following Lipschitz
estimate:

‖Dv‖L∞(Q+
2r) ≤ c

(
−
∫
Q+

3r

|Dv|2 dx

) 1
2

,

where the constant c is depending only on λ, Λ, and n.

From now on, we will use the letter c to denote a constant that can be
explicitly computed in terms of known quantities such as λ,Λ, n, p,R, and |Ω|.
This constant may vary in different occurrences.

3. W 1,2-approximation lemmas

We start with an interior approximation lemma.

Lemma 3.1. Let u be the weak solution of the variational inequality (1.1) and
Q4r ⊂ Ω. Suppose that for a small positive constant δ

−
∫
Q4r

|θ(a, Q4r)|2 dx ≤ δ2,
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and

−
∫
Q4r

|Du|2 dx ≤ 1, −
∫
Q4r

|F |2 dx ≤ δ2, −
∫
Q4r

|Dψ|2 dx ≤ δ2

hold. Then there exist a constant n1 = n1(n, λ,Λ) ≥ 1 and a function W ∈
L∞(Q2r) such that

‖W‖L∞(Q2r) ≤ n1 and −
∫
Q2r

|Du−W |2 dx ≤ cδ
σ1

2+σ1

for some universal constant σ1 > 0.

The proof of this lemma will be omitted as it is very similar to that of
Lemma 3.2. We also refer to the proof of Lemmas 4.4 and 4.3 in [7].

We next prove an approximation lemma near the boundary.

Lemma 3.2. Let u be the weak solution to the variational inequality (1.1).
Suppose that for a small positive constant δ

Q+
5r ⊂ Ω5r ⊂ Q5r ∩ {x1 > −10δr},(3.1)

−
∫
Q5r

|θ(a, Q5r)|2 dx ≤ δ2,(3.2)

and

(3.3) −
∫

Ω5r

|Du|2 dx ≤ 1, −
∫

Ω5r

|F |2 dx ≤ δ2, −
∫

Ω5r

|Dψ|2 dx ≤ δ2

hold. Then there exist a constant n2 = n2(n, λ,Λ) ≥ 1 and a function V ∈
L∞(Ω2r) such that

‖V ‖L∞(Ω2r) ≤ n2 and −
∫

Ω2r

|Du− V |2 dx ≤ cδ
σ2

2+σ2

for some universal constant σ2 > 0.

Proof. The proof will be divided into several steps. Note that Step 4 might not
be required when we prove interior cases.

Step 1. We first consider the following nonlinear elliptic equation.

(3.4)

{
−div a(Dk, x) = −div a(Dψ, x) in Ω5r,

k = u on ∂Ω5r.

Since u ∈ A, we see that k ≥ ψ a.e. in Ω5r, by Lemma 2.4. Without loss of
generality, we may assume that k = u (≥ ψ) in Ω \Ω5r and so k ≥ ψ a.e. in Ω.
It follows from taking φ = k in (1.1) that

(3.5)

∫
Ω5r

a(Du, x) ·D (u− k) dx ≤
∫

Ω5r

F ·D (u− k) dx.

By (1.2) and (3.4)-(3.5) we see that

−
∫

Ω5r

|D(u− k)|2 dx ≤ c−
∫

Ω5r

[a(Du, x)− a(Dk, x)] · (Du−Dk) dx
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≤ c−
∫

Ω5r

[F − a(Dψ, x)] ·D(u− k) dx

≤ c−
∫

Ω5r

[
|F |2 + |Dψ|2

]
dx+

1

2
−
∫

Ω5r

|D(u− k)|2 dx.

The last inequality follows from (1.2) again and Young’s inequality. Thanks to
(3.3), we have that

(3.6) −
∫

Ω5r

|D(u− k)|2 dx ≤ c−
∫

Ω5r

[
|F |2 + |Dψ|2

]
dx ≤ cδ2

and then

(3.7) −
∫

Ω5r

|Dk|2 dx ≤ c
(

1 + −
∫

Ω5r

|Du|2 dx
)
≤ c.

Step 2. We next compare k to the unique weak solution w of

(3.8)

{
−div a(Dw, x) = 0 in Ω5r,

w = k on ∂Ω5r.

Then it follows that

−
∫

Ω5r

|D(w − k)|2 dx ≤ c−
∫

Ω5r

[a(Dw, x)− a(Dk,w)] ·D(w − k) dx

≤ c−
∫

Ω5r

[−a(Dk,w)] ·D(w − k) dx.

Since w − k ∈ H1
0 (Ω5r), we take w − k as a test function of (3.4). It follows

from (1.2) and Young’s inequality that

−
∫

Ω5r

[−a(Dk, x)] ·D(w − k) dx = −
∫

Ω5r

[−a(Dψ, x)] ·D(w − k) dx

≤ c−
∫

Ω5r

|Dψ|2 dx+
1

2
−
∫

Ω5r

|D(w − k)|2 dx.

Thus we have that, by (3.3),

(3.9) −
∫

Ω5r

|D(w − k)|2 dx ≤ c−
∫

Ω5r

|Dψ|2 dx ≤ cδ2

and that, by (3.7),

(3.10) −
∫

Ω5r

|Dw|2 dx ≤ c
(

1 + −
∫

Ω5r

|Dk|2 dx
)
≤ c.

Step 3. Let h be a unique weak solution of

(3.11)

{
− div āB′4r (Dh, x1) = 0 in Ω4r,

h = w on ∂Ω4r.
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Then we have

(3.12)

−
∫

Ω4r

|D(w − h)|2 dx

≤ c−
∫

Ω4r

[āB′4r (Dw, x1)− āB′4r (Dh, x1)] ·D(w − h) dx

≤ c−
∫

Ω4r

āB′4r (Dw, x1) ·D(w − h) dx.

Since w−h ∈ H1
0 (Ω4r), we may assume that w−h = 0 in Ω\Ω4r. Consequently

we see that

(3.13)

∫
Ω4r

a(Dw, x) ·D(w − h) dx =

∫
Ω5r

a(Dw, x) ·D(w − h) dx = 0,

by taking the test function w − h ∈ H1
0 (Ω5r) in the problem (3.8). It follows

from (3.12), (3.13) and (1.4) that

−
∫

Ω4r

|D(w − h)|2 dx ≤ c−
∫

Ω4r

[āB′4r (Dw, x1)− a(Dw, x)] ·D(w − h) dx

≤ c−
∫

Ω4r

θ(a, Q4r) |Dw| |D(w − h)| dx

≤ c−
∫

Ω4r

|θ(a, Q4r)|2|Dw|2dx+
1

2
−
∫

Ω4r

|D(w − h)|2 dx

and so

(3.14) −
∫

Ω4r

|D(w − h)|2 dx ≤ c−
∫

Ω4r

|θ(a, Q4r)|2|Dw|2 dx.

Thanks to the Reifenberg flatness condition (3.1), Ω4r satisfies the measure
density condition (see Remark 1.2) and thus the local version of Sobolev’s
inequality and Poincaré’s inequality hold true on the Reifenberg flat domain
(see [6, 7]). Moreover, the weak solution w of the homogeneous equation (3.8)
has the property of self-improving integrability, because w = 0 on ∂wΩ5r.
Precisely, there exists a small positive constant σ = σ(n, λ,Λ) such that

(3.15)

(
−
∫

Ω4r

|Dw|2+σ dx

) 1
2+σ

≤ c

(
−
∫

Ω5r

|Dw|2 dx
) 1

2

and consequently it follows from (3.10) that

(3.16) −
∫

Ω4r

|Dw|2+σ dx ≤ c.
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With this self-improving property, we estimate the right hand side of (3.14) as
follows:

(3.17)

−
∫

Ω4r

|θ(a, Q4r)|2|Dw|2 dx ≤
(
−
∫

Ω4r

|θ(a, Q4r)|
2(2+σ)
σ dx

) σ
2+σ

×
(
−
∫

Ω4r

|Dw|2+σ dx

) 2
2+σ

.

By (1.2), (1.4) and (3.1)-(3.2), it follows

(3.18)

(
−
∫

Ω4r

|θ(a, Q4r)|
2(2+σ)
σ dx

) σ
2+σ

≤ c
(
−
∫
Q4r

|θ(a, Q4r)|2 dx
) σ

2+σ

≤ cδ
2σ

2+σ
.

Hence, it follows from (3.14), (3.17), (3.16), and (3.18) that

(3.19) −
∫

Ω4r

|D(w − h)|2 dx ≤ cδ
2σ

2+σ
.

Step 4. Define η = η(x1) ∈ C∞(R) with

(3.20) η = 0 in (−10δr, 0), η = 1 in R \ (−12δr, 2δr), and |Dη| ≤ c

δr
.

Then we consider a unique weak solution v of

(3.21)

{
−div āB′4r (Dv, x1) = 0 in Q+

3r,

v = ηh on ∂Q+
3r.

It directly follows that∫
Q+

3r

āB′4r (Dv, x1) ·D(v − ηh) dx = 0

and, by (3.20),

(3.22)

∫
Ω3r

āB′4r (Dv̄, x1) ·D(v̄ − ηh) dx = 0,

where v̄ is the zero extension of v fromQ+
3r toQ3r. Due to (3.11) and η(v̄−ηh) ∈

H1
0 (Ω3r), we have that

(3.23)

∫
Ω3r

āB′4r (Dh, x1) ·D
[
η(v − ηh)

]
dx = 0.

Combining (1.2), (3.22), and (3.23) yields

λ−
∫

Ω3r

|D(v̄ − ηh)|2 dx

≤ −
∫

Ω3r

[āB′4r (Dv̄, x1)− āB′4r (D(ηh), x1)] ·D(v̄ − ηh) dx

= −
∫

Ω3r

[āB′4r (Dh, x1)− āB′4r (D(ηh), x1)] ·D(v̄ − ηh) dx
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− −
∫

Ω3r

āB′4r (Dh, x1) ·D(v̄ − ηh) dx

= −
∫

Ω3r

[āB′4r (Dh, x1)− āB′4r (D(ηh), x1)] ·D(v̄ − ηh) dx

+ −
∫

Ω3r

āB′4r (Dh, x1) ·Dη (v̄ − ηh) dx

+ −
∫

Ω3r

āB′4r (Dh, x1) ·D(v̄ − ηh) (η − 1) dx

and so, by (1.2) again,

(3.24)

−
∫

Ω3r

|D(v̄ − ηh)|2 dx ≤ c

(
−
∫

Ω3r

|Dh−D(ηh)| |D(v̄ − ηh)| dx

+ −
∫

Ω3r

|Dh| |Dη| |v̄ − ηh| dx

+ −
∫

Ω3r

|Dh| |D(v̄ − ηh)| |1− η| dx
)
.

We first note that, from the self-improving property (see, for example, (3.15)),
there exists a constant σ0 > 0 such that(

−
∫

Ω3r

|Dh|2+σ0dx

) 1
2+σ0

≤ c
(
−
∫

Ω4r

|Dh|2dx
) 1

2

and thus, by (3.10) and (3.19),

(3.25)

(
−
∫

Ω3r

|Dh|2+σ0dx

) 1
2+σ0

≤ c.

We now estimate the first integral on right-hand side of (3.24). From
Hölder’s inequality, we see

−
∫

Ω3r

|Dh−D(ηh)| |D(v̄ − ηh)| dx(3.26)

≤ c

(
−
∫

Ω3r

|1− η|2|Dh|2 + |Dη|2|h|2dx
) 1

2
(
−
∫

Ω3r

|D(v̄ − ηh)|2dx
) 1

2

.

Since it follows from (3.25) that(
1

|Ω3r|

∫
Ω3r∩{x1<2δr}

|Dh|2dx

) 1
2

(3.27)

≤ c

(
−
∫

Ω3r

|Dh|2+σ0dx

) 1
2+σ0

(
|Ω3r ∩ {x1 < 2δ}|

|Ω3r|

) σ0
2(2+σ0)

≤ cδ
σ0

2(2+σ0) ,



250 Y. KIM AND S. RYU

we have that, by (3.20),

(3.28)

(
−
∫

Ω3r

|1− η|2|Dh|2dx
) 1

2

≤

(
1

|Ω3r|

∫
Ω3r∩{x1<2δr}

|Dh|2dx

) 1
2

≤ cδ
σ0

2(2+σ0) .

Let h̄ be the zero extension of h from Ω3r to Q3r. Since h = 0 on ∂wΩ3r,
h̄ ∈ H1(Q3r) and it follows

(3.29)

∫
Ω3r∩{x1<2δr}

|h(x)|2dx

≤
∫

Ω3r∩{x1<2δr}

(∫ 2δr

−12δr

|D1h̄(y1, x
′)|dy1

)2

dx

≤ cδr

∫
Ω3r∩{x1<2δr}

(∫ 2δr

−12δr

|D1h̄(y1, x
′)|2dy1

)
dx

≤ c(δr)2

∫
Ω3r∩{x1<2δr}

|D1h̄(y1, x
′)|2dy1dx

′.

Thus, it follows from (3.20) and (3.29) that

(3.30)

∫
Ω3r

|Dη|2|h|2dx ≤ c

(δr)2

∫
Ω3r∩{x1<2δr}

|h|2dx

≤ c∗
∫

Ω3r∩{x1<2δr}
|Dh|2dx,

where the constant c∗ is independent on δ and r. Combining (3.30) and (3.27)
implies

(3.31)

(
−
∫

Ω3r

|Dη|2|h|2dx
) 1

2

≤ c

(
1

|Ω3r|

∫
Ω3r∩{x1<2δr}

|Dh|2dx

) 1
2

≤ cδ
σ0

2(2+σ0) .

Thanks to (3.26), (3.28), and (3.31), thus, we have

(3.32) −
∫

Ω3r

|Dh−D(ηh)| |D(v̄−ηh)| dx ≤ cδ
σ0

2(2+σ0)

(
−
∫

Ω3r

|D(v̄ − ηh)|2dx
) 1

2

.

We next estimate the second integral on right-hand side of (3.24). From
(3.20) and Hölder’s inequality,

−
∫

Ω3r

|Dh| |Dη| |v̄ − ηh| dx(3.33)

≤ c(δr)−1

|Ω3r|

∫
Ω3r∩{x1<2δr}

|Dh| |v̄ − ηh| dx
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≤ c(δr)−1

|Ω3r|

(∫
Ω3r∩{x1<2δr}

|Dh|2dx

) 1
2
(∫

Ω3r∩{x1<2δr}
|v̄ − ηh|2dx

) 1
2

.

Since v̄ − ηh = 0 on Q3r ∩ {x1 = 0}, on the other hand, it follows

|(v̄ − ηh)(x)| ≤
∫ 2δr

0

|D1(v̄ − ηh)(y1, x
′)|dy1

in Q+
3r ∩ {x1 < 2δr} and by Hölder’s inequality

|(v̄ − ηh)(x)|2 ≤ 2δr

∫ 2δr

0

|D1(v̄ − ηh)(y1, x
′)|2dy1

in Q+
3r ∩{x1 < 2δr}. From the fact that v̄− ηh = 0 on Ω3r \Q+

3r, we have that∫
Ω3r∩{x1<2δr}

|v̄ − ηh|2dx ≤ c(δr)2

∫
Ω3r∩{x1<2δr}

|D1(v̄ − ηh)|2dx

and thus

(3.34)

(
1

|Ω3r|

∫
Ω3r∩{x1<2δr}

|v̄ − ηh|2dx

) 1
2

≤ cδr
(
−
∫

Ω3r

|D(v̄ − ηh)|2dx
) 1

2

.

Combining (3.33), (3.27), and (3.34) yields that

(3.35) −
∫

Ω3r

|Dh| |Dη| |v̄ − ηh| dx ≤ cδ
σ0

2(2+σ0)

(
−
∫

Ω3r

|D(v̄ − ηh)|2dx
) 1

2

.

The last integral on right-hand side of (3.24) is estimated as follows:

(3.36)

−
∫

Ω3r

|Dh| |D(v̄ − ηh)| |1− η| dx

≤

(
1

|Ω3r|

∫
Ω3r∩{x1<2δr}

|Dh|2dx

) 1
2 (
−
∫

Ω3r

|D(v̄ − ηh)|2dx
) 1

2

≤ cδ
σ0

2(2+σ0)

(
−
∫

Ω3r

|D(v̄ − ηh)|2dx
) 1

2

,

where we used Hölder’s inequality, (3.20), and (3.31). Therefore, combining
(3.24), (3.32), (3.35), and (3.36), we have

(3.37) −
∫

Ω3r

|D(v̄ − ηh)|2 dx ≤ cδ
σ0

2+σ0 .

A direct calculation yields that

−
∫

Ω3r

|D(v̄ − h)|2 dx ≤ 2−
∫

Ω3r

|D(v̄ − ηh)|2 + |D(ηh)−Dh|2 dx

and

−
∫

Ω3r

|D(ηh)−Dh|2 dx ≤ 2−
∫

Ω3r

|1− η|2|Dh|2 + |Dη|2|h|2 dx.
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Consequently, by (3.37), (3.28), and (3.31), we obtain that

(3.38) −
∫

Ω3r

|D(v̄ − h)|2 dx ≤ cδ
σ0

2+σ0

and that, by (3.1) and (3.25)

(3.39) −
∫
Q+

3r

|Dv|2 dx ≤ c−
∫

Ω3r

|Dv̄|2 dx ≤ c,

because v̄ is the zero extension of v from Q+
3r to Q3r.

Step 5. Now, we combine (3.6), (3.9), (3.19), and (3.38) to derive

−
∫

Ω2r

|Du−Dv̄|2 dx ≤ c
(
δ2 + δ2 + δ

2σ
2+σ + δ

σ0
2+σ0

)
≤ cδ

σ2
2+σ2

for some σ2 > 0. Applying Lemma 2.5 with (3.21) and (3.39) yields that

‖Dv̄‖L∞(Ω2r) ≤ c‖Dv‖L∞(Q+
2r) ≤ c

(
−
∫
Q+

3r

|Dv|2dx

) 1
2

≤ c.

Finally, we complete the proof of this lemma by taking V = Dv̄. �

4. Global W 1,p estimates

In this section, we obtain the optimal W 1,p regularity for the weak solution
to the variational inequality (1.1) based on Lemma 2.2. So, let u ∈ A be the
weak solution to (1.1). For a given p ∈ (2,∞), assume that F, Dψ ∈ Lp(Ω;Rn).

Now, in order to apply Lemma 2.2 to our situation, we need the following
result.

Lemma 4.1. There exists a constant N = N(λ,Λ, n) > 1 such that for each
ε ∈ (0, 1) one can select a small δ = δ(ε, λ,Λ, n) ∈ (0, 1

8 ) such that for such a
small δ, if (a(ξ, x),Ω) is (δ, 25R)-vanishing of codimension 1 and Qr(y) with
y ∈ Ω and r ∈ (0, R) satisfies

(4.1)
∣∣ {x ∈ Ω :M

(
|Du|2

)
> N2

}
∩Qr(y)

∣∣ ≥ ε |Qr(y)| ,
then we have

(4.2)
Ωr(y) ⊂

{
x ∈ Ω: M

(
|Du|2

)
> 1
}
∪
{
x ∈ Ω: M

(
|F |2

)
> δ2

}
∪
{
x ∈ Ω: M

(
|Dψ|2

)
> δ2

}
.

Proof. We prove the lemma by contradiction. Thus, assume that Qr(y) satisfies
(4.1) and the claim (4.2) is false. Then there exists a point y1 ∈ Ωr(y) =
Qr(y) ∩ Ω such that for every ρ > 0 one has

1

|Qρ(y1)|

∫
Ωρ(y1)

|Du|2 dx ≤ 1,

1

|Qρ(y1)|

∫
Ωρ(y1)

|F |2 dx ≤ δ2, and
1

|Qρ(y1)|

∫
Ωρ(y1)

|Dψ|2 dx ≤ δ2.(4.3)
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We first consider the interior case: Q6
√

2r(y) ⊂ Ω. Without loss of generality,
we may assume that y = 0. Then

(4.4) Q4
√

2r ⊂ Q5
√

2r(y1) ⊂ Q6
√

2r ⊂ Ω.

Since (a(ξ, x),Ω) is (δ, 25R)-vanishing of codimension 1, there exists a new
coordinate system such that

(4.5) Q4r ⊂ Ω and −
∫
Q4r

|θ(a, Q4r)|2 dx ≤ δ2.

It follows from (4.3), (4.4), and (4.5) that

−
∫
Q4r

|Du|2dx ≤
|Q5
√

2r|
|Q4r|

−
∫
Q5
√

2r(y1)

|Du|2dx ≤ c.

Similarly, we have that

−
∫
Q4r

|F |2dx ≤ cδ2 and −
∫
Q4r

|Dψ|2dx ≤ cδ2.

Applying Lemma 3.1, one can find W ∈ L∞(Q2r) and n1 = n1(n, λ,Λ) ≥ 1
such that

(4.6) ‖W‖L∞(Q2r) ≤ n1 and −
∫
Q2r

|Du−W |2dx ≤ cδ
σ1

2+σ1

for some universal constant σ1 > 0. Now we set N1 = max{4n2
1, 2

n}. Since
Qr ⊂ Ω, we have that∣∣{x ∈ Ω :M(|Du|2) > N2

1

}
∩Qr

∣∣
≤
∣∣{x ∈ Qr :M(|Du−W |2) > n2

1

}∣∣+
∣∣{x ∈ Qr :M(|W |2) > n2

1

}∣∣
≤ c

n2
1

∫
Qr

|Du−W |2dx ≤ cδ
σ1

2+σ1 |Qr|

by (4.6) and weak type (1, 1) estimate (2.1). Since y = 0, we find that, in the
original coordinate system, for N ≥ N1

|{x ∈ Ω : (|Du|2) > N2} ∩Qr(y)| ≤ cδ
σ1

2+σ1 |Qr(y)|.

This is a contradiction to (4.1) and completes the proof of the interior case.
We next consider the boundary case: Q6

√
2r(y) 6⊂ Ω. Since (a(ξ, x),Ω) is

(δ, 25R)-vanishing of codimension 1, there exists a coordinate system such that

(4.7) Q+
25r ⊂ Ω25r ⊂ Q25r ∩ {x1 > −50δr} and −

∫
Q25r

|θ(a, Q25r)|2dx ≤ δ2.

Since Ω25r ⊂ Q25
√

2r ⊂ Q31
√

2r(y) ⊂ Q32
√

2r(y1),

(4.8) −
∫

Ω25r

|Du|2dx ≤
|Q32

√
2r(y1)|

|Ω25r|
−
∫
Q32
√

2r(y1)

|Du|2dx ≤ c
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by (4.3). Similarly, we have

(4.9) −
∫

Ω25r

|F |2dx ≤ cδ2 and −
∫

Ω25r

|Dψ|2dx ≤ cδ2.

It follows from Lemma 3.2 with (4.7), (4.8), and (4.9) that there exist V ∈
L∞(Ω10r) and n2 = n2(n, λ,Λ) ≥ 1 such that

‖V ‖L∞(Ω10r) ≤ n2 and −
∫

Ω10r

|Du− V |2dx ≤ cδ
σ2

2+σ2

for some universal constant σ2 > 0. Now, letting N2 = max
{

4n2
2, 4

n
}

, we
estimate as follows:∣∣{x ∈ Ω :M(|Du|2) > N2

2

}
∩Q10r

∣∣
≤
∣∣{x ∈ Ω10r :M(|Du− V |2) > n2

2

}∣∣+
∣∣{x ∈ Ω10r :M(|V |2) > n2

2

}∣∣
≤ c

∫
Ω10r

|Du− V |2dx ≤ cδ
σ2

2+σ2 |Ω10r|.

Owing to that Qr(y) ⊂ Q10r, in the original coordinate system, for N ≥ N2∣∣{x ∈ Ω :M(|Du|2) > N2
}
∩Qr(y)

∣∣
≤
∣∣{x ∈ Ω10r :M(|Du− V |2) > n2

2

}∣∣
≤ cδ

σ2
2+σ2 |Ω10r| ≤ cδ

σ2
2+σ2 |Qr(y)|.

This is a contradiction to (4.1) and completes the proof of the boundary case.
�

Now fix ε > 0 and take δ and N as given in Lemma 4.1. Based on Lemma 2.2,
we have the following power decay estimates.

Lemma 4.2. Let u be the weak solution to the variational inequality (1.1).
Suppose that (a(ξ, x),Ω) is (δ, 25R)-vanishing of codimension 1 and suppose
that for every y ∈ Ω

(4.10)
∣∣{x ∈ Ω :M(|Du|2) > N2

}
∩QR(y)

∣∣ < ε|QR|.

Finally, set ε∗ =
(

20
√

2
1−δ

)n
ε. Then for each positive integer k, we have∣∣{x ∈ Ω: M(|Du|2) > N2k

}∣∣
≤ εk∗

∣∣{x ∈ Ω: M(|Du|2) > 1
}∣∣+

k∑
i=1

εi∗

∣∣∣{x ∈ Ω: M(|F |2) > δ2N2(k−i)
}∣∣∣

+

k∑
i=1

εi∗

∣∣∣{x ∈ Ω: M(|Dψ|2) > δ2N2(k−i)
}∣∣∣ .

Proof. Define

C =
{
x ∈ Ω: M(|Du|2) > N2

}



OBSTACLE PROBLEMS WITH MEASURABLE NONLINEARITIES 255

and

D =
{
x ∈ Ω: M(|Du|2) > 1

}
∪
{
x ∈ Ω: M(|F |2) > δ2

}
∪
{
x ∈ Ω: M(|Dψ|2) > δ2

}
.

Clearly C ⊂ D ⊂ Ω and the first condition of Lemma 2.2 is the assumption
(4.10). Moreover, the second one of Lemma 2.2 is a direct consequence of
Lemma 4.1. So, applying Lemma 2.2 yields the claim in the case k = 1 and
the proof is completed by iteration. �

Finally, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. We first take the universal constant ε ∈ (0, 1) so that

(4.11) Np80nε <
1

2

and then find a corresponding δ = δ(ε, λ,Λ, n) ∈ (0, 1
8 ) from Lemma 4.1.

We consider the renormalized maps:

(4.12) ũ =
δ|QR|1/2 u

‖F‖L2(Ω) + ‖Dψ‖L2(Ω)
,

and

(4.13) F̃ =
δ|QR|1/2 F

‖F‖L2(Ω) + ‖Dψ‖L2(Ω)
, and ψ̃ =

δ|QR|1/2 ψ
‖F‖L2(Ω) + ‖Dψ‖L2(Ω)

.

Then, thanks to Lemma 2.3 with M =
‖F‖L2(Ω)+‖Dψ‖L2(Ω)

δ|QR|1/2 and L2 estimates,

we have that

(4.14)

∫
Ω

|Dũ|2dx ≤ c
∫

Ω

[
|F̃ |2 + |Dψ̃|2

]
dx ≤ cδ2|QR|

and so

(4.15)
∣∣{x ∈ Ω :M(|Dũ|2) > N2

}∣∣ ≤ c∫
Ω

|Dũ|2dx ≤ cδ2|QR| < ε|QR|,

where the last inequality will be held by further selecting a smaller δ depending

δ = δ(ε, λ,Λ, n, p) ∈ (0, 1/8).

On the other hand, due to Lemma 2.1 with g = M(δ−2|F̃ |2), θ = N and
µ = 1, we have that

∞∑
k=i

Np(k−i)|{x ∈ Ω : M(|F̃ |2) > δ2N2(k−i)}| ≤ c
∥∥∥M(δ−2|F̃ |2)

∥∥∥ p2
L
p
2 (Ω)

and that, by strong type (p, p) estimate (2.2) and (4.14),∥∥∥M(δ−2|F̃ |2)
∥∥∥ p2
L
p
2 (Ω)

≤ c
∥∥∥δ−2|F̃ |2

∥∥∥ p2
L
p
2 (Ω)

≤ c
∥∥∥δ−1F̃

∥∥∥p
Lp(Ω)

.
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Thus it follows that

(4.16)

∞∑
k=i

Np(k−i)
∣∣∣{x ∈ Ω :M(|F̃ |2) > δ2N2(k−i)

}∣∣∣ ≤ c1 ∥∥∥δ−1F̃
∥∥∥p
Lp(Ω)

.

Similarly, we have

(4.17)

∞∑
k=i

Np(k−i)
∣∣∣{x ∈ Ω :M(|Dψ̃|2) > δ2N2(k−i)

}∣∣∣ ≤ c2 ∥∥∥δ−1Dψ̃
∥∥∥p
Lp(Ω)

.

Note that the universal constants c1 and c2 are independent of δ.

Set ε∗ =
(

20
√

2
1−δ

)n
ε. It follows from (4.11) that

(4.18) Npε∗ ≤ Np80nε ≤ 1

2
.

Combining Lemma 4.2 with (4.15), (4.16)-(4.17), and (4.18) yields that
∞∑
k=1

Nkp
∣∣{x ∈ Ω: M(|Du|2) > N2k

}∣∣
≤

∞∑
k=1

Nkpεk∗
∣∣{x ∈ Ω :M(|Du|2) > 1

}∣∣
+

∞∑
k=1

Nkp
k∑
i=1

εi∗

∣∣∣{x ∈ Ω :M(|F |2) > δ2N2(k−i)
}∣∣∣

+

∞∑
k=1

Nkp
k∑
i=1

εi∗

∣∣∣{x ∈ Ω :M(|Dψ|2) > δ2N2(k−i)
}∣∣∣

≤
∞∑
k=1

(Npε∗)
k |Ω|

+

∞∑
i=1

(Npε∗)
i

( ∞∑
k=i

N (k−i)p
∣∣∣{x ∈ Ω :M(|F |2) > δ2N2(k−i)

}∣∣∣)

+

∞∑
i=1

(Npε∗)
i

( ∞∑
k=i

N (k−i)p
∣∣∣{x ∈ Ω :M(|Dψ|2) > δ2N2(k−i)

}∣∣∣)

≤ c

(
|Ω|+

∥∥∥δ−1F̃
∥∥∥p
Lp(Ω)

+
∥∥∥δ−1Dψ̃

∥∥∥p
Lp(Ω)

) ∞∑
k=1

(Npε∗)
k

≤ c

(
|Ω|+

∥∥∥δ−1F̃
∥∥∥p
Lp(Ω)

+
∥∥∥δ−1Dψ̃

∥∥∥p
Lp(Ω)

)
.

Therefore, we have proved that combining strong type (p, p) estimate (2.2)
and Lemma 2.1, Dũ ∈ Lp(Ω;Rn) with the estimate

‖Dũ‖pLp(Ω;Rn) ≤ c
(
|Ω|+

∥∥∥δ−1F̃
∥∥∥p
Lp(Ω)

+
∥∥∥δ−1Dψ̃

∥∥∥p
Lp(Ω)

)
.
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We recall that ε = ε(λ,Λ, n, p) ∈ (0, 1) is a constant taken in (4.18), and the
corresponding constant δ = δ(ε, λ,Λ, n, p) ∈ (0, 1/8) is chosen by Lemma 4.1

and (4.15). Therefore, by the definitions of ũ, F̃ , and ψ̃ and Hölder’s inequality,
we have that

‖Du‖pLp(Ω;Rn) ≤ c
(

(|Ω|/|QR|)
p
2 + 1

)(
‖F‖pLp(Ω;Rn) + ‖Dψ‖pLp(Ω;Rn)

)
,

where the constant c depends only on λ, Λ, n, and p. This completes the
proof. �

5. Weighted Orlicz regularity estimates

In this section, we derive regularity estimates for the weak solution to the
variational inequality (1.1) in the weighted Orlicz spaces. We first recall the
definition of the Muckenhoupt classes Ap of weights. A positive locally inte-
grable function w on Rn is said to be a weight. For a given 1 < p < ∞, the
weight w = w(x) belongs to the Muckenhoupt class Ap if

[w]p := sup

(
1

|Q|

∫
Q

w(x) dx

)(
1

|Q|

∫
Q

w(x)
−1
p−1 dx

)p−1

<∞,

where the supremum is taken over all cubes Q ⊂ Rn. Note that Ap class can
be defined in another way; that is, w ∈ Ap if and only if

(5.1)

(
1

|Q|

∫
Q

f(x)dx

)p
≤ c

w(Q)

∫
Q

(
f(x)

)p
w(x)dx

holds for all positive f and all cubes Q. The smallest constant c for which (5.1)
is valid equals the constant [w]p. As a direct consequence of (5.1), we have

1

[w]p

(
|E|
|Q|

)p
≤ w(E)

w(Q)

whenever w ∈ Ap for some p ∈ (1,∞) and E is a measurable subset of Q.
Here, we used the notation w(E) =

∫
E
w(x) dx. In addition, the reverse Hölder

inequality which is an essential property of Ap-weight yields that

(5.2)
w(E)

w(Q)
≤ µ

(
|E|
|Q|

)τ
for some constants µ > 1 and τ ∈ (0, 1). Note that these µ and τ depend only
on n, p, and [w]p. We refer to [34,36] for more details about Ap-weight.

We now introduce Orlicz spaces. The function Φ : [0,∞)→ [0,∞) is said to
be a Young function if Φ is increasing, convex, and satisfies

Φ(0) = 0, Φ(∞) = lim
ρ→+∞

Φ(ρ) = +∞, lim
ρ→0+

Φ(ρ)

ρ
= 0, lim

ρ→+∞

Φ(ρ)

ρ
= +∞.

To define reflexive Banach spaces, we further assume that the Young function
Φ satisfies the so-called ∆2 and ∇2 conditions, denoted by Φ ∈ ∆2 ∩∇2,

Φ(2ρ) ≤ ν1Φ(ρ) for some ν1 > 1 and all ρ > 0 (Φ ∈ ∆2)
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and

2ν2Φ(ρ) ≤ Φ(ν2ρ) for some ν2 > 1 and all ρ > 0 (Φ ∈ ∇2).

Note that for Φ ∈ ∆2 ∩∇2 one can find two constants τ1 and τ2 with 1 < τ1 ≤
τ2 <∞ such that

(5.3)
1

c
min{λτ1 , λτ2}Φ(ρ) ≤ Φ(λρ) ≤ cmax{λτ1 , λτ2}Φ(ρ), λ, ρ ≥ 0,

where the constant c is independent of λ and ρ. We next define the lower index
of Φ, denoted by i(Φ), by

i(Φ) = lim
λ→0+

log(hΦ(λ))

log λ
= sup

0<λ<1

log(hΦ(λ))

log λ
,

where

hΦ(λ) = sup
ρ>0

Φ(λρ)

Φ(ρ)
(λ > 0).

In fact, the lower index number i(Φ) equals the supremum of τ1 satisfying (5.3)
and 1 < i(Φ) <∞ due to Φ ∈ ∆2 ∩∇2.

We finally ready to define the weighted Orlicz space considered here. For a
Young function Φ ∈ ∆∩∇2 and a weight w ∈ Ai(Φ), the weighted Orlicz space

LΦ
w(Ω) is the class of all measurable functions g : Ω→ R satisfying∫

Ω

Φ(|g(x)|)w(x)dx < +∞.

This weighted Orlicz space LΦ
w(Ω) can be equipped with the weighted Luxem-

burg norm;

‖g‖LΦ
w(Ω) = inf

{
κ > 0 :

∫
Ω

Φ

(
|g(x)|
κ

)
w(x) dx ≤ 1

}
.

Owing to (5.3) and the convexity of Φ, we have that

1

c
min

{
‖g‖τ1

LΦ
w(Ω)

, ‖g‖τ2
LΦ
w(Ω)

}
≤
∫

Ω

Φ(|g(x)|)w(x)dx(5.4)

≤ cmax
{
‖g‖τ1

LΦ
w(Ω)

, ‖g‖τ2
LΦ
w(Ω)

}
.

In addition, it is well-known that the Hardy-Littlewood maximal operator is
bounded from weighted Lebesgue space Lpw(Rn) to itself. Similarly, for a given
Young function Φ ∈ ∆2∩∇2 and a weight w ∈ Ai(Φ), there exists c = c(n,Φ, w)
such that

(5.5)

∫
Rn

Φ
(
Mg(x)

)
w(x)dx ≤ c

∫
Rn

Φ
(
|g(x)|

)
w(x)dx

for all g ∈ LΦ
w(Rn) with compact support in Rn. We finally refer to [9,17,21,29]

for a more discussion on Ai(Φ)-weight and weighted Orlicz spaces.
We are now ready to state the main result.
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Theorem 5.1. Let u ∈ A be the weak solution to the variational inequality
(1.1). Suppose that w ∈ Ai(Φ) with Φ ∈ ∆2∩∇2 and further that |F |2, |Dψ|2 ∈
LΦ
w(Ω). Then there exists a constant δ = δ(λ,Λ, n,Φ, w) ∈ (0, 1/8) such that if

(a(ξ, x),Ω) is (δ, 25R)-vanishing of codimension 1, then |Du|2 ∈ LΦ
w(Ω) with

the estimate

(5.6) ‖|Du|2‖LΦ
w(Ω) ≤ c

(
‖|F |2‖LΦ

w(Ω) + ‖|Dψ|2‖LΦ
w(Ω)

)
,

where c is a positive constant depending only on λ,Λ, n,R,Φ, w, and Ω.

We remark that the variational inequality (1.1) has a unique weak solution
u ∈ A, under the assumptions |F |2, |Dψ|2 ∈ LΦ

w(Ω) with Φ ∈ ∆2 ∩ ∇2 and
w ∈ Ai(Φ). In fact, it follows LΦ

w(Ω) ⊂ L1(Ω) and precisely for |F |2 ∈ LΦ
w(Ω)

the following estimate is obtained:
(5.7)∫

Ω

|F (x)|2 dx ≤ c

[(
−
∫

Ω

Φ(|F |2)w(x)dx

) 1
τ1

+

(
−
∫

Ω

Φ(|F |2)w(x)dx

) 1
τ2

]
.

(Note that −
∫

Ω
· · · means 1

w(Ω)

∫
Ω
· · · on the right hand side of (5.7) and the

constant c depends only on n, [w]i(Φ), and diam(Ω).) Thus, the existence and
uniqueness of weak solution in A to (1.1) is obtained by the classical theory.
The inequality (5.7) is followed by the reverse Hölder property of Ai(Φ)-weight;
that is, w ∈ Ai(Φ)−ε0 with [w]i(Φ)−ε0 ≤ cn,i(Φ)[w]i(Φ). By (5.3),

λi(Φ)−ε0Φ(t) ≤ cΦ(λt), λ ≥ 1, t ≥ 0,

and specially

|g(x)|i(Φ)−ε0 ≤ c

Φ(1)
Φ(|g(x)|) if |g(x)| ≥ 1.

Consequently we have that∫
{Ω:|g(x)|≥1}

|g(x)| dx ≤ c
(∫

Ω

Φ(|g(x)|)w(x)dx

) 1
i(Φ)−ε0

for some c = c(w,Φ, diam(Ω)) > 0. For more details, we refer to [9, 17,29].

Lemma 5.2. Given a Young function Φ ∈ ∆2 ∩ ∇2, let w ∈ Ai(Φ). Assume
that g is a nonnegative and measurable function defined on a bounded domain
Ω in Rn. Let θ > 0 and λ > 1 be constants. Then

g ∈ LΦ
w(Ω) ⇐⇒ S =

∑
k≥1

Φ
(
λk
)
w
({

x ∈ Ω : g(x) > θλk
})

<∞

and
1

c
S ≤

∫
Ω

Φ
(
g(x)

)
w(x) dx ≤ c

(
w(Ω) + S

)
,

the positive constant c depending only on θ, λ, Φ, and w.
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The weighted measure version of the Calderon-Zygmund-Krylov-Safonov-
type covering lemma is used to prove the main theorem. The following lemma
can be found in [27,29] with slight modifications.

Lemma 5.3. Given a Young function Φ ∈ ∆2 ∩∇2, let w ∈ Ai(Φ). Let Ω be a
bounded (δ,R)-Reifenberg flat domain for some small δ > 0 and let C and D
be measurable sets with C ⊂ D ⊂ Ω. Suppose that there exists small ε > 0 such
that

(1) for any y ∈ Ω, w(C ∩QR(y)) < εw(QR(y)),
(2) for each y ∈ Ω and r ∈ (0, R),

if w(C ∩Qr(y)) ≥ εw(Qr(y)), then Qr(y) ∩ Ω ⊂ D.

Then

w(C) ≤ c∗ εw(D),

where the constant c∗ is depending only on n,Φ, w, and 1
1−δ .

Now, we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. In view of (5.4), we have that

‖|Du|2‖αLΦ
w(Ω) ≤ c

∫
Ω

Φ
(
|Du|2

)
w(x)dx ≤ c

∫
Ω

Φ
(
M(|Du|2)

)
w(x)dx

for some α > 0. Thanks to Lemma 5.2, it suffices to show that

S =
∑
k≥1

Φ
(
N2k

)
w
(
{x ∈ Ω :M(|Du|2) > N2k}

)
<∞,

under the assumption ‖|F |2‖LΦ
w(Ω) + ‖|Dψ|2‖LΦ

w(Ω) ≤ δ2. Then the desired
estimate (5.6) is follows from Lemma 2.3. Note that, by (5.4) and (5.7), we
have that

(5.8)

∫
Ω

(
|F |2 + |Dψ|2

)
dx ≤ c

(
‖|F |2‖LΦ

w(Ω) + ‖|Dψ|2‖LΦ
w(Ω)

)τ3 ≤ cδ2τ3

for some τ3 = τ3(τ1, τ2) > 0.

Fix ε and then take δ and N as given in Lemma 4.1 with
(
ε
µ

) 1
τ

, in place of

ε, where µ and τ are given by (5.2). Define the sets

C =
{
x ∈ Ω: M(|Du|2) > N2

}
and

D =
{
x ∈ Ω: M(|Du|2) > 1

}
∪
{
x ∈ Ω: M(|F |2) > δ2

}
∪
{
x ∈ Ω: M(|Dψ|2) > δ2

}
.

To apply Lemma 5.3, check its hypotheses. Clearly C ⊂ D ⊂ Ω and for
each y ∈ Ω it follows from (5.2), weak type (1,1) estimate (2.1), the standard
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L2-estimate, (5.8) that

w(C ∩QR(y))

w(QR(y))
≤ µ

(
|C ∩QR(y)|
|QR(y)|

)τ1
≤ c |C|τ ≤ c

(∫
Ω

|Du|2 dx
)τ

≤ c
(∫

Ω

(
|F |2 + |Dψ|2

)
dx

)τ
≤ cδ2ττ3 < ε,

where the last inequality will be held by further selecting a small δ depending

δ = δ(ε, n, λ,Λ,Φ, w,R, diam(Ω)) ∈ (0, 1/8).

To check the second condition of Lemma 5.3, we suppose that w(C ∩Qr(y)) ≥
εw(Qr(y)). It follows from (5.2) that

ε ≤ w(C ∩Qr(y))

w(Qr(y))
≤ µ

(
|C ∩Qr(y)|
|Qr(y)|

)τ
and so(

ε

µ

) 1
τ

|Qr(y)| ≤ |C ∩QR(y)| =
∣∣{x ∈ Ω: M(|Du|2) > N2

}
∩QR(y)

∣∣ .
By the choice of δ, one may apply Lemma 4.1 for the constant

(
ε
µ

) 1
τ

instead

of ε to find that δ, Qr(y) ∩ Ω ⊂ D. Thus we have Lemma 5.3 and that

w
({
x ∈ Ω: M(|Du|2) > N2

})
≤ ε∗w

({
x ∈ Ω: M(|Du|2) > 1

})
+ ε∗w

({
x ∈ Ω: M(|F |2) > δ2

})
+ ε∗w

({
x ∈ Ω: M(|Dψ|2) > δ2

})
,

where ε∗ = c∗

(
ε
µ

) 1
τ

. Moreover, we have the following power decay estimates

due to its iteration argument: for k = 1, 2, 3, . . .,

w
({
x ∈ Ω: M(|Du|2) > N2k

})
≤ εk∗w

({
x ∈ Ω: M(|Du|2) > 1

})
+

k∑
i=1

εi∗w
({
x ∈ Ω: M(|F |2) > δ2N2(k−i)

})
+

k∑
i=1

εi∗w
({
x ∈ Ω: M(|Dψ|2) > δ2N2(k−i)

})
.

The rest of the proof is the same as the proof of Theorem 1.3 in Section 4,
but we have to use (5.5) and Lemma 5.2 instead of using (2.2) and Lemma 2.1,
respectively. For more details, we refer to [29]. This completes the proof. �
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