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IDENTITIES AND RELATIONS ON THE q-APOSTOL TYPE

FROBENIUS-EULER NUMBERS AND POLYNOMIALS

Irem Kucukoglu and Yilmaz Simsek

Abstract. The main purpose of this paper is to investigate the q-Apostol

type Frobenius-Euler numbers and polynomials. By using generating
functions for these numbers and polynomials, we derive some alternative

summation formulas including powers of consecutive q-integers. By using
infinite series representation for q-Apostol type Frobenius-Euler numbers

and polynomials including their interpolation functions, we not only give

some identities and relations for these numbers and polynomials, but also
define generating functions for new numbers and polynomials. Further

we give remarks and observations on generating functions for these new

numbers and polynomials. By using these generating functions, we derive
recurrence relations and finite sums related to these numbers and polyno-

mials. Moreover, by applying higher-order derivative to these generating

functions, we derive some new formulas including the Hurwitz–Lerch zeta
function, the Apostol-Bernoulli numbers and the Apostol-Euler numbers.

Finally, for an application of the generating functions, we derive a mul-

tiplication formula, which is very important property in the theories of
normalized polynomials and Dedekind type sums.

1. Introduction

We need the following notations, definitions and relations: In the following
let C, R, R+ and N be the sets of complex numbers, real numbers, positive real
numbers, and positive integers, respectively. Let [x] be q-analogue of x which
is given by

[x] = [x : q] =

{
x, q = 1,

1−qx
1−q = 1 + q + q2 + · · ·+ qx−1, q 6= 1.
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266 I. KUCUKOGLU AND Y. SIMSEK

This function satisfies the following properties:

[x+ y] = [x] + qx [y]

and

(1) [xy] = [x] [y : qx]

(cf. [8, 15,16,18,21,34]).
Let λ, q ∈ C. The q-Apostol type Frobenius-Euler polynomials Hn(x;u; a, b;

λ; q) are given by

Fλ,q (x, t;u, a, b) =

(
1− at

u

) ∞∑
n=0

(
λ

u

)n
b[n+x]t(2)

=

∞∑
n=0

Hn (x;u; a, b;λ; q)
tn

n!
,

where a, b ∈ R+ (a 6= b) and u ∈ C \ {1} with
∣∣λ
u

∣∣ < 1 (cf. [21]).
In the special case when x = 0, these polynomials reduce to the q-Apostol

type Frobenius-Euler numbers

Hn (u; a, b;λ; q) = Hn (0;u; a, b;λ; q) ,

which are given by the following generating function:

Fλ,q (t;u, a, b) =

(
1− at

u

) ∞∑
n=0

(
λ

u

)n
b[n]t(3)

=

∞∑
n=0

Hn (u; a, b;λ; q)
tn

n!

(cf. [21]).
It follows from (2) and (3) that

Fλ,q (x, t;u, a, b) = bt[x]Fλ,q (qxt;u, a, b)

(cf. [21]).
If q → 1, then equation (2) reduces to the following generating functions for

the generalized Eulerian type polynomials as follows:

lim
q→1

Fλ,q (x, t;u, a, b) =
at − u
λbt − u

btx

=

∞∑
n=0

Hn (x;u; a, b;λ; 1)
tn

n!

(cf. [22, Definition 4.1], [23]). In the above equation, if we set a = 1 and
b = e, we have the generating functions for the Apostol-type Frobenius–Euler
numbers and polynomials, respectively, as follows:

(4)
1− u
λet − u

=

∞∑
n=0

Hn (λ|u)
tn

n!
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and

(5)
1− u
λet − u

etx =

∞∑
n=0

Hn (x;λ|u)
tn

n!

(cf. [3, 22]). That is,

Hn (λ|u) = Hn (u; 1, e;λ; 1) ,

and

Hn (x;λ|u) = Hn (x;u; 1, e;λ; 1) .

For a = 1, λ = 1 and b = e, the functions Fλ,q (t;u, a, b) and the functions
Fλ,q (x, t;u, a, b) reduce to the generating functions for the q-Frobenius–Euler
numbers and polynomials, respectively as follows:

(6) F1,q (t;u, 1, e) = Fu,q (t) =

(
1− 1

u

) ∞∑
n=0

e[n]t

un
=

∞∑
n=0

Hn (u, q)
tn

n!
,

and

F1,q (x, t;u, 1, e) = Fu,q (t, x) =

(
1− 1

u

) ∞∑
n=0

e[n+x]t

un
(7)

=

∞∑
n=0

Hn (x, u, q)
tn

n!
.

That is,

(8) Hn (u; 1, e; 1; q) = Hn (u, q) ,

and

(9) Hn (x;u; 1, e; 1; q) = Hn (x, u, q)

(cf. [16, 18]).
Moreover, in the special case of u = −1, (6) and (7) yields the generating

functions for the q-Euler numbers and polynomials, respectively, as follows:

2

∞∑
n=0

(−1)
n
e[n]t =

∞∑
n=0

En,q
tn

n!
,

and

2

∞∑
n=0

(−1)
n
e[n+x]t =

∞∑
n=0

En,q (x)
tn

n!
.

Namely,

(10) Hn (−1; 1, e; 1; q) = En,q,

and

(11) Hn (x;−1; 1, e; 1; q) = En,q (x)

(cf. [14, 21,25,27]).
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Note that, for λ = 1, (4) and (5) reduce to the generating functions for the
Frobenius–Euler numbers and polynomials, respectively as follows:

(12)
1− u
et − u

=

∞∑
n=0

Hn (u)
tn

n!
,

and
1− u
et − u

etx =

∞∑
n=0

Hn (x;u)
tn

n!
,

that is,

Hn (x;u) = Hn (x;u; 1, e; 1; 1)

and

Hn (u) = Hn (u; 1, e; 1; 1)

(cf. [16, 18,21,23,28,32]).
In [31, Eq. (21)], Srivastava et al. gave the following special case of the

generalized Bernoulli polynomials

(13) FB (t;x;λ; a, b, c) =
tctx

λbt − at
=
∞∑
n=0

Bn (x;λ; a, b, c)
tn

n!
,

where a, b, c ∈ R+ and a 6= b.
The polynomials Yn(x;λ; a) are defined as follows (see, e.g., [1, 21,22,24])

(14)
t

λat − 1
axt =

∞∑
n=0

Yn(x;λ; a)
tn

n!
, (a ≥ 1)

and for x = 0, these polynomials are reduced to the numbers Yn(λ; a) =
Yn(0;λ; a). Note that

Y0(x;λ; a) = 0,

Y1(x;λ; a) =
1

λ− 1
.

The Hurwitz-Lerch zeta function Φ (λ, s, a) is defined by:

Φ(λ, s, a) =

∞∑
m=0

λm

(m+ a)
s ,

where a ∈ C\Z−0 ; s ∈ C when |z| < 1; <(s) > 1 when |z| = 1 and this function
interpolates the Apostol-Bernoulli numbers Bn (λ) with the following relation:

(15) Φ (λ,−v, 0) = −Bv+1 (λ)

v + 1
,

so that, the Apostol-Bernoulli numbers Bn (λ) is defined by the following gen-
erating function:

t

λet − 1
=

∞∑
n=0

Bn (λ)
tn

n!
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(cf. [2, 6, 7, 12,29,30]).
We note that a relation between the Frobenius-Euler numbers and the Apos-

tol Bernoulli numbers is given by

Hn (u) =
1− u

u (n+ 1)
Bn+1

(
1

u

)
(cf. [12, 17]).

The Apostol-Euler numbers Ev (λ) are defined by (cf. [6, 7, 12,29,30]):

(16)
2

λet + 1
=

∞∑
n=0

En (λ)
tn

n!
.

The well-known relation between the Apostol-Bernoulli numbers and the Apo-
stol-Euler numbers is given as follows:

(17) En (λ) = −2Bn+1 (−λ)

n+ 1

(cf. [6, 7, 12,29,30]).
This paper is organized as follows:
In Section 2, by using the generating functions for the q-Apostol type Froben-

ius-Euler numbers and polynomials and a method similar to that in [9] and [19],
we provide some alternative summation formulas including powers of consec-
utive q-integers. We give some special cases of the obtained summation for-
mulas. In Section 3, by using infinite series representation for q-Apostol type
Frobenius-Euler numbers and polynomials, we provide some identities and re-
lations associated with these numbers and polynomials. In Section 4, in the
light of Section 3, we define generating functions for new numbers and poly-
nomials. We give remarks and observations on these generating functions. In
Section 5, we give some recurrence formulas, finite sums and relations including
not only these numbers and polynomials, but also other special numbers and
polynomials. In Section 6, by applying higher-order derivative to these gener-
ating functions, we derive some new formulas including the Hurwitz–Lerch zeta
function, the Apostol-Bernoulli numbers and the Apostol-Euler numbers. In
Section 7, for an application of the generating functions, we derive a multiplica-
tion formula, which is very important in the theories of normalized polynomials
and Dedekind type sums. Finally, we give a remark and some observations on
this formula.

2. Some alternative summation formulas including powers of
consecutive q-integers

In this section, by using the same method as that in [9] and [19], we derive
some alternative summation formulas including powers of consecutive q-integers
arising from the generating functions for the q-Apostol type Frobenius-Euler
numbers and polynomials. We also give some special cases of our summation
formulas.
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From (3) and (2), we have

Fλ,q (t;u, a, b)−
(
λ

u

)n
Fλ,q (n, t;u, a, b)

=

(
1− at

u

)( ∞∑
m=0

(
λ

u

)m
b[m]t −

(
λ

u

)n ∞∑
m=0

(
λ

u

)m
b[m+n]t

)

=

(
1− at

u

)(n−1∑
m=0

(
λ

u

)m
b[m]t

)
.

It follows from the above equation that

Fλ,q (t;u, a, b)−
(
λ

u

)n
Fλ,q (n, t;u, a, b)

=

(
1− et ln a

u

)(n−1∑
m=0

(
λ

u

)m
et[m] ln b

)
.

From the above equation, we have

∞∑
v=0

(
Hv (u; a, b;λ; q)−

(
λ

u

)n
Hv (n;u; a, b;λ; q)

)
tv

v!

=

(
1− 1

u

∞∑
v=0

(t ln a)
v

v!

) ∞∑
v=0

(
n−1∑
m=0

(
λ

u

)m
([m] ln b)

v

)
tv

v!
.

Using the Cauchy product in the right hand side of the above equation yields

∞∑
v=0

(
Hv (u; a, b;λ; q)−

(
λ

u

)n
Hv (n;u; a, b;λ; q)

)
tv

v!

=

∞∑
v=0

(
n−1∑
m=0

(
λ

u

)m
([m] ln b)

v

)
tv

v!

− 1

u

∞∑
v=0

(
v∑
k=0

(
v

k

)
(ln a)

v−k
n−1∑
m=0

(
λ

u

)m
([m] ln b)

k

)
tv

v!
.

Comparing the coefficient of tv

v! in the above equation yields the following the-
orem:

Theorem 2.1. Let n ∈ Z+. Then we have

Hv (u; a, b;λ; q)−
(
λ

u

)n
Hv (n;u; a, b;λ; q)(18)

=

n−1∑
m=0

(
λ

u

)m
([m] ln b)

v − 1

u

v∑
k=0

(
v

k

)
(ln a)

v−k
n−1∑
m=0

(
λ

u

)m
([m] ln b)

k
.
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Remark 2.2.

Hv (u; a, b;λ; q)−
(
λ

u

)n
Hv (n;u; a, b;λ; q)

=

n−1∑
m=0

(
λ

u

)m
([m] ln b)

v − 1

u

n−1∑
m=0

(
λ

u

)m v∑
k=0

(
v

k

)
(ln a)

v−k
([m] ln b)

k
.

By combining the above equation with the binomial theorem, we have

Hv (u; a, b;λ; q)−
(
λ

u

)n
Hv (n;u; a, b;λ; q)(19)

=

n−1∑
m=0

(
λ

u

)m(
([m] ln b)

v − (ln a+ [m] ln b)
v

u

)
.

Substituting a = 1 into the above equation yields the following corollary:

Corollary 2.3. Let n ∈ Z+. Then we have

(20)

n−1∑
m=0

(
λ

u

)m
([m] ln b)

v
=
uHv (u; 1, b;λ; q)− λnun−1Hv (n;u; 1, b;λ; q)

u− 1
.

Remark 2.4. If we substitute λ = 1 and b = e into (20) and combining the
final equation with (9) and (8), we have a summation formula in terms of the
q-Frobenius–Euler numbers and polynomials as follows:

(21)

n−1∑
m=0

[m]
v

um
=
uHv (u, q)− un−1Hv (n, u, q)

u− 1

(cf. [9–13], [20, Theorem 3, Eq. (2.1)], [26]). In addition, taking λ = 1, b = e
and u = −1 in (20) and combining the final equation with (11) and (10) yields
a summation formula calculated with the q-Euler numbers and polynomials as
follows:

n−1∑
m=0

(−1)
m

[m]
v

=
Ev,q + (−1)

n−1
Ev,q (n)

2

(cf. [9, 11]). In the above equation, when q → 1, we have

n−1∑
m=0

(−1)
m
mv =

Ev + (−1)
n−1

Ev (n)

2

(cf. [9, 11]).

Remark 2.5. In the special case when λ = 1, b = e and q → 1, (20) reduces to
a summation formula expressed in terms of the Frobenius–Euler numbers and
polynomials as follows:

n−1∑
m=0

mv

um
=
uHv (u)− un−1Hv (n;u)

u− 1
,
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where u ∈ C \ {1} (cf. [9, 11, 12]). Furthermore, if we take λ = 1, b = e, q → 1
and u = −α−h, with α ∈ C and |α| < 1, in (20), then we have

n−1∑
m=0

(−1)
m
αhmmv =

E
(h)
v,α + (−1)

n−1
α−hnE

(h)
v,α (n)

2
,

where E
(h)
v,α and E

(h)
v,α (n) denote the (h, q)-extension of Euler numbers and poly-

nomials, respectively (cf. [20, Theorem 3, Eq. (2.1)]).

3. Infinite series representation for q-Apostol type Frobenius-Euler
numbers and polynomials including their interpolation functions

In this section, we give infinite series representation for q-Apostol type
Frobenius-Euler numbers and polynomials including their interpolation func-
tions.

By (2), we get
∞∑
m=0

Hm (x;u; a, b;λ; q)
tm

m!

=

∞∑
m=0

( ∞∑
n=0

(
λ

u

)n
([n+ x] ln b)

m

)
tm

m!

− 1

u

∞∑
m=0

(ln a)
m tm

m!

∞∑
m=0

( ∞∑
n=0

(
λ

u

)n
([n+ x] ln b)

m

)
tm

m!
.

A use of the Cauchy product in the above equation yields
∞∑
m=0

Hm (x;u; a, b;λ; q)
tm

m!

=

∞∑
m=0

( ∞∑
n=0

(
λ

u

)n
([n+ x] ln b)

m

)
tm

m!

− 1

u

∞∑
m=0

(
m∑
k=0

(
m

k

)
(ln a)

m−k
∞∑
n=0

(
λ

u

)n
([n+ x] ln b)

k

)
tm

m!
.

Comparing the coefficient of tm

m! in the above equation yields the following
theorem:

Theorem 3.1. Let |λ| < |u|. Then we have

Hm (x;u; a, b;λ; q)

=

∞∑
n=0

(
λ

u

)n
([n+ x] ln b)

m − 1

u

m∑
k=0

(
m

k

)
(ln a)

m−k
∞∑
n=0

(
λ

u

)n
([n+ x] ln b)

k
.

Remark 3.2. By substituting x = 0 into the above equation, we have

Hm (u; a, b;λ; q)(22)
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=

∞∑
n=0

(
λ

u

)n
([n] ln b)

m − 1

u

m∑
k=0

(
m

k

)
(ln a)

m−k
∞∑
n=0

(
λ

u

)n
([n] ln b)

k
.

Remark 3.3. Substituting a = 1 into (22), we have

Hm (u; 1, b;λ; q) =

∞∑
n=0

(
λ

u

)n
[n]

m
(ln b)

m − 1

u

∞∑
n=0

(
λ

u

)n
[n]

m
(ln b)

m

=

(
1− 1

u

) ∞∑
n=0

(
λ

u

)n
([n] ln b)

m
.(23)

Remark 3.4. Substituting a = 1 and b = e into (22), we have

Hm (u; 1, e;λ; q) =

(
1− 1

u

) ∞∑
n=0

(
λ

u

)n
[n]

m
.

When we modify (3), we have

(24)

∞∑
n=0

(
λ

u

)n
b[n]t =

(
u

u− at

) ∞∑
m=0

Hm (u; a, b;λ; q)
tm

m!
.

Thus, we have

∞∑
m=0

∞∑
n=0

(
λ

u

)n
([n] ln b)

m tm

m!
=

u

u− 1

∞∑
m=0

Hm (u; a, b;λ; q)
tm

m!

(
u− 1

u− et ln a

)
.

Combining the above equation with (12) yields

∞∑
m=0

∞∑
n=0

(
λ

u

)n
([n] ln b)

m tm

m!
=

u

u− 1

∞∑
m=0

Hm (u; a, b;λ; q)
tm

m!

×
∞∑
m=0

Hm (u) (ln a)
m tm

m!
.

Using Cauchy product in the above equation yields

∞∑
m=0

∞∑
n=0

(
λ

u

)n
([n] ln b)

m tm

m!

=
u

u− 1

∞∑
m=0

m∑
k=0

(
m

k

)
(ln a)

m−kHk (u; a, b;λ; q)Hm−k (u)
tm

m!
.

Comparing the coefficient of tm

m! in the above equation yields the following
theorem:

Theorem 3.5. Let |λ| < |u| and a 6= 1. Then we have

(25)

∞∑
n=0

(
λ

u

)n(
[n]

ln b

ln a

)m
=

u

u− 1

m∑
k=0

(
m

k

)
Hk (u; a, b;λ; q)Hm−k (u)

(ln a)
k

.
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Remark 3.6. We can also write (25) as follows:

∞∑
n=0

(
λ

u

)n
([n] ln b)

m
(26)

=
u

u− 1

m∑
k=0

(
m

k

)
(ln a)

m−kHk (u; a, b;λ; q)Hm−k (u) .

Substituting a = 1 into (26), we have

∞∑
n=0

(
λ

u

)n
([n] ln b)

m
=

u

u− 1
Hm (u; 1, b;λ; q)H0 (u) .

Since

H0 (u) = 1,

we have
∞∑
n=0

(
λ

u

)n
([n] ln b)

m
=

u

u− 1
Hm (u; 1, b;λ; q) ,

as in (23). If λ = 1 and b = e in the above equation, by (8), one can easily find

lq(u,−m) =

∞∑
n=0

[n]
m

un
=

u

u− 1
Hm (u, q) ,

where lq(u, s) denotes a complex analytic lq-series which was constructed by
Satoh [15] and investigated by Tsumura [33] in p-adic and twisted cases, re-
spectively.

Remark 3.7. Equation (26) gives us another interpolation functions for the
numbers Hk (u; a, b;λ; q) and the numbers Hk (u). If we replace m by −s ∈ C,
we get the following lq-type series

(27) lq(s, u; b;λ) =

∞∑
n=0

(
λ

u

)n
1

([n] ln b)
s .

By using (25), for a 6= 1, we set

Im (u; a, b;λ; q) :=

(
1− 1

u

) ∞∑
n=0

(
λ

u

)n(
[n]

ln b

ln a

)m
(28)

=

m∑
k=0

(
m

k

)
Hk (u; a, b;λ; q)Hm−k (u)

(ln a)
k

.(29)

We also set an interpolation function for the numbers Im (u; a, b;λ; q) as
follows:

(30) lq(s, u; a, b;λ) =

(
1− 1

u

) ∞∑
n=0

(
λ

u

)n
1(

[n] ln b
ln a

)s ,
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where s ∈ C,
∣∣λ
u

∣∣ < 1, a ∈ R+ \ {1}, b ∈ R+ and ln (z) denotes the principal
branch of the multi-valued function ln (z) with the imaginary part Im (ln (z))
constrained by −π < arg (z) < π and |z| > 0.

Substituting m by −s ∈ C into the above equation, we have

lq(−m,u; a, b;λ) = Im (u; a, b;λ; q) .

Since
u

u− 1
(ln a)

−s
lq(s, u; a, b;λ) = lq(s, u; b;λ),

substituting m by −s ∈ C into (30) yields

lq(−m,u; b;λ) =
u

u− 1

m∑
k=0

(
m

k

)
(ln a)

m−kHk (u; a, b;λ; q)Hm−k (u) .

When a→ 1 in (30), we get

lim
a→1

lq(s, u; a, b;λ) = ζ
(1)
λ,q (s;u, 1, b) =

(
1− 1

u

) ∞∑
n=0

(
λ

u

)n
1

([n] ln b)
s ,

where ζ
(1)
λ,q (s;u, 1, b) denotes the following zeta function (cf. [4, Definition 5.1]):

ζ
(v)
λ,q (w;u, a, b)

=

v∑
j=0

(−1)
v−j

(
v

j

) ∞∑
n1,n2,...,nv=0

(
λn

uv−j+n

)
1

((v − j) ln a+ [n] ln b)
w

with Re (w) > 0 and

n1 + n2 + · · ·+ nv = n.

4. Observations on generating functions for the numbers
Im (u; a, b;λ; q) and polynomials Im (x;u; a, b;λ; q)

In the light of previous section, we here give generating functions for the
numbers Im (u; a, b;λ; q). We also define the polynomials Im (x;u; a, b;λ; q)
with their generating functions.

Now, we define generating functions for the numbers Im (u; a, b;λ; q) as fol-
lows:

FI (t, u; a, b;λ; q) =

∞∑
m=0

Im (u; a, b;λ; q)
tm

m!

=

(
1− 1

u

) ∞∑
n=0

(
λ

u

)n
et[n]

ln b
ln a ,(31)

where a 6= 1.
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Remark 4.1. Upon setting q → 1 in (31) and using (4), we get for
∣∣∣λuet ln b

ln a

∣∣∣ < 1

that

lim
q→1

FI (t, u; a, b;λ; q) =
1− u

λet
ln b
ln a − u

.

That is,

Im (u; a, b;λ; 1) =

(
ln b

ln a

)m
Hm (λ|u) .

By using (31), we also define the polynomials Im (x;u; a, b;λ; q) with the
following generating functions

GI (x, t;u; a, b;λ; q) =

(
1− 1

u

) ∞∑
n=0

(
λ

u

)n
et[n+x]

ln b
ln a(32)

=

∞∑
m=0

Im (x;u; a, b;λ; q)
tm

m!
,

where a 6= 1. It should be noted that

(33) Im (u; a, b;λ; q) = Im (0;u; a, b;λ; q) .

Combining the above equation with (31) yields the following functional equa-
tion:

(34) GI (x, t;u; a, b;λ; q) = et[x]
ln b
ln aFI (qxt, u; a, b;λ; q) .

It follows from the above functional equation that
∞∑
m=0

Im (x;u; a, b;λ; q)
tm

m!
=

∞∑
m=0

(
[x]

ln b

ln a

)m
tm

m!

∞∑
m=0

Im (u; a, b;λ; q) qxm
tm

m!
.

Using the Cauchy product in the above equation and comparing the coefficient
of tm

m! yields the following theorem:

Theorem 4.2. Let a 6= 1. Then we have

(35) Im (x;u; a, b;λ; q) =

m∑
j=0

(
m

j

)(
[x]

ln b

ln a

)m−j
qxjIj (u; a, b;λ; q) .

Remark 4.3. Substituting a = e into (31) and (32) respectively yields

Fλ,q (t;u, 1, b) = FI (t, u; e, b;λ; q)

and

Fλ,q (x, t;u, 1, b) = GI (x, t;u; e, b;λ; q) .

Hence, we have

Hm (u; 1, b;λ; q) = Im (u; e, b;λ; q)

and

Hm (x;u; 1, b;λ; q) = Im (x;u; e, b;λ; q) .
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Moreover, by the above relations, (20) may also be written as follows:

n−1∑
m=0

(
λ

u

)m
([m] ln b)

v
=
uIv (u; e, b;λ; q)− λnun−1Iv (n;u; e, b;λ; q)

u− 1
.

5. Recurrence relations and finite sums

In this section, by using generating functions, we derive recurrence formu-
las for the polynomials Yn(x;λ; a) and the numbers Im (u; a, b;λ; q). More-
over, we give a relation between the polynomials Yn(x;λ; a) and the numbers
Im (u; a, b;λ; q). Finally, we give finite sums related to the aforementioned
numbers and polynomials.

By using (14), we have

t

∞∑
n=0

(x ln a)
n t

n

n!
= λ

∞∑
n=0

(ln a)
n t

n

n!

∞∑
n=0

Yn(x;λ; a)
tn

n!
−
∞∑
n=0

Yn(x;λ; a)
tn

n!
.

Using Cauchy product in the above equation yields

∞∑
n=0

n (x ln a)
n−1 t

n

n!

=

∞∑
n=0

λ
 n∑
j=0

(
n

j

)
(ln a)

n−j
Yj(x;λ; a)

− Yn(x;λ; a)

 tn

n!
.

Comparing the coefficient of tn

n! in the above equation yields a recurrence for-
mula for the polynomials Yn(x;λ; a) given by the following theorem:

Theorem 5.1. Let a ≥ 1. Then we have

(36) n (x ln a)
n−1

+ Yn(x;λ; a) = λ

n∑
j=0

(
n

j

)
(ln a)

n−j
Yj(x;λ; a).

We modify (36) by the following corollary:

Corollary 5.2.

n (x ln a)
n−1

= λ (Y (x;λ; a) + ln a)
n − Yn(x;λ; a),

where Y n(x;λ; a) replaced by Yn(x;λ; a).

In order to prove Theorem 5.3, we firstly give the following generating func-
tion for the q-Bernoulli type numbers An (λ; b, u; q) associated with the positive
real parameter b and the complex parameters u and λ as follows:

(37) FA (t;λ; b, u; q) =

∞∑
n=0

(
λ

u

)n
b[n]t =

∞∑
n=0

An (λ; b, u; q)
tn

n!
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which, in the special case when q → 1, reduces to

lim
q→1

FA (t;λ; b, u; q) = −1

t
FB

(
t; 0;

λ

u
; 1, b, c

)
.

Hence, the relation between the polynomial Bn (x;λ; a, b, c) and the numbers
An (λ; b, u; q) is given by

An (λ; b, u; 1) = −
Bn+1

(
0; λu ; 1, b, c

)
n+ 1

.

Secondly, by modifying (24), we get

−1

t

(
t

1
ua

t − 1

) ∞∑
m=0

Hm (u; a, b;λ; q)
tm

m!
=

∞∑
n=0

(
λ

u

)n
b[n]t.

Combining the above equation with (14) and (37), we have
∞∑
m=0

Ym

(
1

u
; a

)
tm

m!

∞∑
m=0

Hm (u; a, b;λ; q)
tm

m!
= −t

∞∑
m=0

Am (λ; b, u; q)
tm

m!
.

Using Cauchy product in the above equation yields

∞∑
m=0

 m∑
j=0

(
m

j

)
Hj (u; a, b;λ; q)Ym−j

(
1

u
; a

) tm

m!

= −
∞∑
m=0

mAm−1 (λ; b, u; q)
tm

m!
.

Therefore, comparing the coefficient of tm

m! in the above equation yields the
following theorem:

Theorem 5.3. Let m ∈ N. We have

(38)

m∑
j=0

(
m

j

)
Hj (u; a, b;λ; q)Ym−j

(
1

u
; a

)
= −mAm−1 (λ; b, u; q) .

Remark 5.4. When q → 1 and λ = 1, (38) reduces to Theorem 4.1 in [24].

By modifying (31), for a 6= 1, we have
∞∑
m=0

Im (u; a, b;λ; q)
tm

m!
=

(
1− 1

u

)
e

ln b
(1−q) ln a

t
∞∑
n=0

(
λ

u

)n
e

qn ln b
(q−1) ln a

t.

After some calculations in the above equation, we obtain

∞∑
m=0

Im (u; a, b;λ; q)
tm

m!
= (u− 1)

( ∞∑
m=0

(−1)m
(

ln b

(q − 1) ln a

)m
tm

m!

)

×
∞∑
m=0

(
ln b

(q − 1) ln a

)m
1

u− λqm
tm

m!
.
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Therefore
∞∑
m=0

Im (u; a, b;λ; q)
tm

m!

= (u− 1)

∞∑
m=0

(
ln b

(q − 1) ln a

)m m∑
j=0

(−1)m−j
(
m

j

)
1

u− λqj
tm

m!
.

Using the Cauchy product in the above equation and comparing the coefficient
of tm

m! in the above equation yields the following theorem:

Theorem 5.5.

(39) Im (u; a, b;λ; q) = (u− 1)

(
ln b

(q − 1) ln a

)m m∑
j=0

(−1)m−j
(
m

j

)
1

u− λqj
.

Remark 5.6. If we set λ = 1, a = b = e and replace u by u−1, then we have
the following equation which was given by Srivastava et al. [32, Eq. (10.3)]:

H
(
u−1 : q|1

)
=

1− u
(1− q)m

m∑
j=0

(−1)j
(
m

j

)
1

1− qju
,

where H
(
u−1 : q|1

)
denotes the Euler–Barnes’ type Daehee q-Euler numbers.

Substituting (39) into (35), we derive an explicit formula for the polynomials
Im (x;u; a, b;λ; q) by the following corollary:

Corollary 5.7.

Im (x;u; a, b;λ; q) = (u− 1)

(
ln b

ln a

)m m∑
j=0

(
m

j

)
[x]

m−j
(40)

×
(

qx

q − 1

)j j∑
v=0

(−1)j−v
(
j

v

)
1

u− λqv
.

Combining (39) with (29) and using (33) yields

(u− 1)

(
ln b

q − 1

)m m∑
v=0

(−1)m−v
(
m

v

)
1

u− λqv

=

m∑
k=0

(
m

k

)
(ln a)

m−kHk (u; a, b;λ; q)Hm−k (u) .

When q → −1 in (19) and after some elementary calculation, we get the
following theorem:

Theorem 5.8.
n−1∑
m=0
m odd

(
λ

u

)m
=

u

u (ln b)
v − (ln (ab))

v(41)
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× lim
q→−1

(
Hv (u; a, b;λ; q)−

(
λ

u

)n
Hv (n;u; a, b;λ; q)

)
.

Substituting a = 1 and b = e into (41) yields the following corollary:

Corollary 5.9.

n−1∑
m=0
m odd

(
λ

u

)m
=

u

u− 1
lim
q→−1

(
Hv (u; 1, e;λ; q)−

(
λ

u

)n
Hv (n;u; 1, e;λ; q)

)
.

6. Identities derived from differential equation for the function
FI (t, u; a, b;λ; q)

In this section, we give a higher-order partial differential equation of the
generating function FI (t, u; a, b;λ; q). By using this equation, we derive some
new formulas including the Hurwitz–Lerch zeta function, the Apostol-Bernoulli
numbers and the Apostol-Euler numbers.

Differentiating v times both side of (31), with respect to t, yields, for a 6= 1,

∂v

∂tv
FI (t, u; a, b;λ; q)(42)

=

(
1− 1

u

) ∞∑
n=0

(
λ

u

)n(
[n]

ln b

ln a

)v
et[n]

ln b
ln a

=

(
ln b

ln a

)v (
1− 1

u

) ∞∑
n=0

(
λ

u

)n(
1− qn

1− q

)v
et[n]

ln b
ln a .

Combining the binomial theorem with the above equation, we have

∂v

∂tv
FI (t, u; a, b;λ; q)

=

(
ln b

(1− q) ln a

)v (
1− 1

u

) v∑
j=0

(−1)
v−j

(
v

j

) ∞∑
n=0

(
λ

u
qv−j

)n
et[n]

ln b
ln a .

Hence, we get the following partial differential equation

∂v

∂tv
FI (t, u; a, b;λ; q)=

(
ln b

(1− q) ln a

)v v∑
j=0

(−1)
v−j

(
v

j

)
FI
(
t, u; a, b;λqv−j ; q

)
.

Combining the differential equation with (31) yields
∞∑
m=0

Im+v (u; a, b;λ; q)
tm

m!

=

∞∑
m=0

( ln b

(1− q) ln a

)v v∑
j=0

(−1)
v−j

(
v

j

)
Im
(
u; a, b;λqv−j ; q

) tm

m!
.

Comparing the coefficient of tm

m! in the above equation yields the following
theorem:
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Theorem 6.1. Let a 6= 1. Then we have

Im+v (u; a, b;λ; q) =

(
ln b

(1− q) ln a

)v v∑
j=0

(−1)
v−j

(
v

j

)
Im
(
u; a, b;λqv−j ; q

)
.

From (42) and (28), we have

∂v

∂tv
FI (t, u; a, b;λ; q)

∣∣∣∣
t=0

= Iv (u; a, b;λ; q) .

If q → 1 in the above equation, then we have

(43) lim
q→1

∂v

∂tv
FI (t, u; a, b;λ; q)

∣∣∣∣
t=0

=

(
ln b

ln a

)v (
1− 1

u

)
Φ

(
λ

u
,−v, 0

)
.

Combining (43) and (15) yields the following corollary:

Corollary 6.2.

(44) lim
q→1

∂v

∂tv
FI (t, u; a, b;λ; q)

∣∣∣∣
t=0

=

(
ln b

ln a

)v (
1

u
− 1

)
Bv+1

(
λ
u

)
v + 1

.

Substituting a = b = e and u = −1 into (44) and using (17) yields the
following corollary:

Corollary 6.3.

lim
q→1

∂v

∂tv
FI (t,−1; e, e;λ; q)

∣∣∣∣
t=0

= Ev (λ) .

7. Multiplication formula for the polynomials Im (x;u; a, b;λ; q)

In this section, by using generating function techniques, we derive a multi-
plication formula for the polynomials Im (x;u; a, b;λ; q). We also give a remark
and observations on this formula.

Substituting n = md+ k, m = 0, 1, . . . ,∞, k = 0, . . . , d− 1 into (32) yields

GI (x, t;u; a, b;λ; q) =

(
1− 1

u

) ∞∑
m=0

d−1∑
k=0

(
λ

u

)md+k
et[md+k+x]

ln b
ln a .

Using (1) in the above equation and some elementary calculation yields

(45)

GI (x, t;u; a, b;λ; q)

=
ud

ud − 1

(
1− 1

u

) d−1∑
k=0

(
λ

u

)k ∞∑
m=0

(
λd

ud

)m
et[d][m+ x+k

d :qd] ln b
ln a .

By (45), we obtain the following functional equation:

(46)

GI (x, t;u; a, b;λ; q)

=

(
ud − ud−1

ud − 1

) d−1∑
k=0

(
λ

u

)k
GI

(
x+ k

d
, t [d] ;ud; a, b;λd; qd

)
.
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Combining (46) with (32), we get

∞∑
m=0

Im (x;u; a, b;λ; q)
tm

m!
=

(
ud − ud−1

ud − 1

) d−1∑
k=0

(
λ

u

)k
×
∞∑
m=0

Im
(
x+ k

d
;ud; a, b;λd; qd

)
(t [d])

m

m!
.

Comparing the coefficient of tm

m! in the above equation yields the following
theorem:

Theorem 7.1.

(47)

Im (x;u; a, b;λ; q)

=

(
ud − ud−1

ud − 1

)
[d]

m
d−1∑
k=0

(
λ

u

)k
Im
(
x+ k

d
;ud; a, b;λd; qd

)
.

Replacing x by xd in (47), we also get the following multiplication formula
for the polynomials Im (x;u; a, b;λ; q):

Corollary 7.2.

(48)

Im (xd;u; a, b;λ; q)

=

(
ud − ud−1

ud − 1

)
[d]

m
d−1∑
k=0

(
λ

u

)k
Im
(
x+

k

d
;ud; a, b;λd; qd

)
.

Remark 7.3. Substituting a = b = e, λ = 1 and q → 1 into (48), we have the
following known multiplication formula (see [22, Eq. (27)]):

Im (xd;u; e, e; 1; 1) =

(
ud − ud−1

ud − 1

)
dm

d−1∑
k=0

(
1

u

)k
Im
(
x+

k

d
;ud; e, e; 1; 1

)
.

Here, if we take u = −1 (with odd d integer) into the above equation, one has
the multiplication formula for the Euler polynomials. Thus, these polynomials
are member of the normalized polynomials which satisfy the following relations:

fn (xd) = dn−1
d−1∑
k=0

fn

(
x+

k

d

)
,

where fn is a polynomial and such polynomials have many applications in the
theory of polynomials in finite fields and also the theory of Dedekind type sums
(see, for details, [5] and [22, p. 19]; see also the references cited in each of these
earlier works on the subject).
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