CORRIGENDUM TO "FREE ACTIONS OF FINITE ABELIAN GROUPS ON 3-DIMENSIONAL NILMANIFOLDS" [J. KOREAN MATH. SOC. 42 (2005), NO. 4, PP. 795-826]

Dongsoon Choi and Joonkook Shin

In [1], Table 2 of Theorem 3.4 and Table 3 of Theorem 3.5 are incorrect in part, and so we here correct them with proofs.

Theorem 3.4. Table 2 gives a complete list of all free actions (up to topological conjugacy) of finite abelian groups G on \mathcal{N}_{p} which yield an orbit manifold homeomorphic to \mathcal{H} / π_{3}.

Table 2

Groups G	Generators	AC classes of normal nilpotent subgroups	
$\mathbb{Z}_{\frac{p}{n}}$	${ }^{\xi}\langle\alpha\rangle$	$\frac{p}{2 n} \in \mathbb{N}$	$N=\left\langle t_{1}^{\frac{p}{2 n}}, t_{2}, t_{3}\right\rangle$
	$\eta_{4}\langle\alpha\rangle$	$\frac{p}{4 n} \in \mathbb{N}$	$L_{2}=\left\langle t_{1}^{\frac{p}{n}} t_{2}, t_{2}^{2}, t_{3}\right\rangle$
$\mathbb{Z}_{\frac{4 p}{}}^{n}$	$\eta_{2}\langle\alpha\rangle$	$\frac{p}{n} \in \mathbb{N}, n \in 2 \mathbb{N}$	$N_{2}=\left\langle t^{\frac{p}{n}} t_{3}, t_{2}, t_{3}^{2}\right\rangle$
	$\zeta_{5}\langle\alpha\rangle$	$\frac{p}{2 n} \in \mathbb{N}, n \in 2 \mathbb{N}-1$	$K_{5}=\left\langle t_{1}^{\frac{p}{1 n}} t_{2}, t_{2}^{2} t_{3}, t_{3}^{2}\right\rangle$
$\mathbb{Z}_{\frac{p}{n}} \times \mathbb{Z}_{4}$	$\zeta_{4}\left\langle\alpha, t_{2}\right\rangle$	$\frac{p}{2 n} \in \mathbb{N}, n \in 2 \mathbb{N}-1$	$K_{4}=\left\langle t_{1}^{\frac{p}{2 n}}, t_{2}^{2} t_{3}, t_{3}^{2}\right\rangle$
$\mathbb{Z}_{\frac{2 p}{n}}^{n} \times \mathbb{Z}_{2}$	$\eta_{1}\left\langle\alpha, t_{3}\right\rangle$	$\frac{p}{n} \in \mathbb{N}, n \in 2 \mathbb{N}$	$N_{1}=\left\langle t^{\frac{p}{n}}, t_{2}, t_{3}^{2}\right\rangle$
	$\zeta_{2}\left\langle\alpha, t_{3}\right\rangle$	$\frac{p}{2 n} \in \mathbb{N}, n \in 2 \mathbb{N}$	$K_{2}=\left\langle t_{1}^{\frac{p}{n}} t_{2}, t_{2}^{2}, t_{3}^{2}\right\rangle$
	$\zeta_{3}\left\langle\alpha, t_{2}\right\rangle$	$\frac{p}{2 n} \in \mathbb{N}, n \in 2 \mathbb{N}$	$K_{3}=\left\langle t_{1}^{\frac{p}{2 n}} t_{3}, t_{2}^{2}, t_{3}^{2}\right\rangle$
	$\zeta_{6}\left\langle\alpha, t_{2}\right\rangle$	$\frac{p}{2 n} \in \mathbb{N}, n \in 2 \mathbb{N}-1$,	$K_{6}=\left\langle t_{1}^{\frac{2 n}{n}} t_{3}, t_{2}^{2} t_{3}, t_{3}^{2}\right\rangle$
		$p \in 2 \mathbb{N}+2$	
$\mathbb{Z}_{\frac{p}{2 n}} \times \mathbb{Z}_{2}$	$\eta_{3}\left\langle\alpha, t_{2}\right\rangle$	$\frac{p}{4 n} \in \mathbb{N}$	$L_{1}=\left\langle t_{1}^{\frac{p}{n}}, t_{2}^{2}, t_{3}\right\rangle$
$\mathbb{Z}_{\frac{p}{n}} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$\zeta_{1}\left\langle\alpha, t_{2}, t_{3}\right\rangle$	$\frac{p}{2 n} \in \mathbb{N}, n \in 2 \mathbb{N}$	$K_{1}=\left\langle t_{1}^{\frac{p}{2 n}}, t_{2}^{2}, t_{3}^{2}\right\rangle$

Proof. First we deal with the case $K_{5}=\left\langle t_{1}^{\frac{p}{2 n}} t_{2}, t_{2}^{2} t_{3}, t_{3}^{2}\right\rangle$, where $\frac{p}{2 n} \in \mathbb{N}, n \in$ $2 \mathbb{N}-1$. We will show that $\langle\alpha\rangle$ genetates the other elements in the following quotient group

$$
\pi_{3} / K_{5}=\left\langle t_{1}, t_{2}, t_{3}, \alpha\right\rangle /\left\langle t_{1}^{\frac{p}{2 n}} t_{2}, t_{2}^{2} t_{3}, t_{3}^{2}\right\rangle .
$$

[^0]From the following relations

$$
\begin{aligned}
& \alpha^{\frac{p}{n}} K_{5}=\left(\alpha^{2}\right)^{\frac{p}{2 n}} K_{5}=t_{1}^{\frac{p}{2 n}} K_{5}=t_{1}^{\frac{p}{2 n}} t_{2}^{2} t_{3} K_{5}=t_{2} t_{3} K_{5}=t_{2} t_{3} t_{2}^{2} t_{3} K_{5}=t_{2}^{3} K_{5}, \\
& t_{2}^{2} K_{5}=t_{2}^{2} t_{3}^{2} K_{5}=t_{3} K_{5}, \quad t_{2}^{4} K_{5}=t_{3}^{2} K_{5}=K_{5},
\end{aligned}
$$

we have

$$
\begin{aligned}
& \alpha^{\frac{2 p}{n}} K_{5}=t_{2}^{6} K_{5}=t_{2}^{2} K_{5}=t_{3} K_{5}, \quad \alpha^{\frac{4 p}{n}} K_{5}=t_{3}^{2} K_{5}=K_{5}, \\
& \left(\alpha^{\frac{p}{n}} K_{5}\right)\left(t_{2} K_{5}\right)=\alpha^{\frac{p}{n}} t_{2} K_{5}=t_{2}^{3} t_{2} K_{5}=t_{2}^{4} K_{5}=K_{5} .
\end{aligned}
$$

Therefore we can obtain that $t_{2} K_{5}=\left(\alpha K_{5}\right)^{-\frac{p}{n}}$ and

$$
\pi_{3} / K_{5}=\left\langle t_{1}, t_{2}, t_{3}, \alpha\right\rangle /\left\langle t_{1}^{\frac{p}{2 n}} t_{2}, t_{2}^{2} t_{3}, t_{3}^{2}\right\rangle=\left\langle\alpha K_{5}\right\rangle \cong \mathbb{Z}_{\frac{4 p}{n}}
$$

Next we shall deal with the case $K_{6}=\left\langle t_{1}^{\frac{p}{2 n}} t_{3}, t_{2}^{2} t_{3}, t_{3}^{2}\right\rangle$, where $\frac{p}{2 n} \in \mathbb{N}, n \in$ $2 \mathbb{N}-1, p \in 2 \mathbb{N}+2$. In this case, since n is an odd number, we have

$$
\alpha t_{2} \alpha^{-1} K_{6}=t_{2}^{-1} \alpha t_{3}^{-n} \alpha^{-1} K_{6}=t_{2}^{-1} t_{3}^{n} K_{6}=t_{2} t_{3}^{n+1} K_{6}=t_{2} K_{6} .
$$

The following relations

$$
\begin{aligned}
& \alpha^{\frac{p}{n}} K_{6}=t_{1}^{\frac{p}{2 n}} K_{6}=t_{1}^{\frac{p}{2 n}} t_{3}^{2} K_{6}=t_{3} K_{6}, \quad \alpha^{\frac{2 p}{n}} K_{6}=t_{3}^{2} K_{6}=K_{6}, \\
& t_{2}^{2} K_{6}=t_{2}^{2} t_{3}^{2} K_{6}=t_{3} K_{6}=\alpha^{\frac{p}{n}} K_{6}, \quad t_{2}^{4} K_{6}=t_{3}^{2} K_{6}=K_{6}
\end{aligned}
$$

show that

$$
\begin{aligned}
\pi_{3} / K_{6} & =\left\langle t_{1}, t_{2}, t_{3}, \alpha\right\rangle /\left\langle t_{1}^{\frac{p}{2 n}} t_{3}, t_{2}^{2} t_{3}, t_{3}^{2}\right\rangle \\
& =\left\langle\alpha K_{6}, t_{2} K_{6} \left\lvert\,\left(\alpha K_{6}\right)^{\frac{p}{n}}=\left(t_{2} K_{6}\right)^{2}\right.,\left(t_{2} K_{6}\right)^{4}=1,\left(\alpha t_{2}\right) K_{6}=\left(t_{2} \alpha\right) K_{6}\right\rangle \\
& \cong \mathbb{Z}_{\frac{2 p}{n}} \times \mathbb{Z}_{2}
\end{aligned}
$$

The other cases can be done similarly.
Theorem 3.5. Table 3 gives a complete list of all free actions (up to topological conjugacy) of finite abelian groups G on \mathcal{N}_{p} which yield an orbit manifold homeomorphic to \mathcal{H} / π_{4}.

Table 3

Group G	Generators	AC classes of normal nilpotent subgroups	
$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$\langle\beta, \alpha\rangle$	$p=4 n$	$N_{1}=\left\langle t_{1}, t_{2}, t_{3}\right\rangle$
$\mathbb{Z}_{2} \times \mathbb{Z}_{4}$	${ }^{\eta}\langle\beta, \alpha\rangle$	$p=2 n$	$N_{2}=\left\langle t_{1}, t_{2} t_{3}, t_{3}^{2}\right\rangle$
	$\zeta_{1}\langle\alpha, \beta\rangle$	$p=8 n$	$L_{1}=\left\langle t_{1} t_{2}, t_{2}^{2}, t_{3}\right\rangle$
$\mathbb{Z}_{4} \times \mathbb{Z}_{4}$	$\zeta_{2}\langle\beta, \alpha\rangle$	$p=4 n$	$L_{2}=\left\langle t_{1} t_{2} t_{3}, t_{2}^{2}, t_{3}^{2}\right\rangle$

Proof. First we deal with the case $L_{1}=\left\langle t_{1} t_{2}, t_{2}^{2}, t_{3}\right\rangle$. From the following relations,

$$
\alpha^{2} L_{1}=t_{3} L_{1}=L_{1}, \quad \beta^{2} L_{1}=t_{1} L_{1}=t_{1} t_{2}^{2} L_{1}=t_{2} L_{1}, \quad \beta^{4} L_{1}=t_{2}^{2} L_{1}=L_{1}
$$

we obtain that

$$
\pi_{4} / L_{1}=\left\langle t_{1}, t_{2}, t_{3}, \alpha, \beta\right\rangle /\left\langle t_{1} t_{2}, t_{2}^{2}, t_{3}\right\rangle=\left\langle\alpha L_{1}, \beta L_{1}\right\rangle \cong \mathbb{Z}_{2} \times \mathbb{Z}_{4}
$$

For the case of $L_{2}=\left\langle t_{1} t_{2} t_{3}, t_{2}^{2}, t_{3}^{2}\right\rangle$, we know that $\alpha^{4} L_{2}=t_{3}^{2} L_{2}=L_{2}$. Since $\left[t_{2}, t_{3}\right]=1$, we have

$$
\begin{aligned}
& \beta^{2} L_{2}=t_{1} L_{2}=t_{1} t_{2}^{2} t_{3}^{2} L_{2}=t_{2} t_{3} L_{2}, \quad \beta^{4} L_{2}=t_{2}^{2} t_{3}^{2} L_{2}=L_{2} \\
& t_{2} L_{2}=t_{1} t_{2} t_{3} t_{2} L_{2}=t_{1} t_{3} L_{2}=\left(\beta L_{2}\right)^{2}\left(\alpha L_{2}\right)^{2}
\end{aligned}
$$

It is easy to show that

$$
\pi_{4} / L_{2}=\left\langle t_{1}, t_{2}, t_{3}, \alpha, \beta\right\rangle /\left\langle t_{1} t_{2} t_{3}, t_{2}^{2}, t_{3}^{2}\right\rangle=\left\langle\beta L_{2}, \alpha L_{2}\right\rangle \cong \mathbb{Z}_{4} \times \mathbb{Z}_{4}
$$

Acknowledgement. The authors wish to thank Dr. Daehwan Koo for pointing out flaws and for valuable comments.

References

[1] D. Choi and J. Shin, Free actions of finite abelian groups on 3-dimensional nilmanifolds, J. Korean Math. Soc. 42 (2005), no. 4, 795-826.

Dongsoon Choi
Daejeon Bongmyeong Middle School
Daejeon 34189, Korea
Email address: stsk23@hanmail.net
Joonkook Shin
Department of Mathematics Education
Chungnam National University
Daejeon 34134, Korea
Email address: jkshin@cnu.ac.kr

[^0]: Received October 24, 2018; Accepted November 7, 2018.
 2010 Mathematics Subject Classification. Primary 57S25; Secondary 57M05, 57S17.
 Key words and phrases. affine conjugacy, almost Bieberbach group, group action, Heisenberg group.

