J. Korean Math. Soc. **56** (2019), No. 1, pp. 285–287 https://doi.org/10.4134/JKMS.j180717 pISSN: 0304-9914 / eISSN: 2234-3008

CORRIGENDUM TO "FREE ACTIONS OF FINITE ABELIAN GROUPS ON 3-DIMENSIONAL NILMANIFOLDS" [J. KOREAN MATH. SOC. 42 (2005), NO. 4, PP. 795–826]

DONGSOON CHOI AND JOONKOOK SHIN

In [1], Table 2 of Theorem 3.4 and Table 3 of Theorem 3.5 are incorrect in part, and so we here correct them with proofs.

Theorem 3.4. Table 2 gives a complete list of all free actions (up to topological conjugacy) of finite abelian groups G on \mathcal{N}_p which yield an orbit manifold homeomorphic to \mathcal{H}/π_3 .

Groups G	Generators	AC classes of normal nilpotent subgroups	
$\mathbb{Z}_{\frac{p}{n}}$	$\xi \langle \alpha \rangle$	$\frac{p}{2n} \in \mathbb{N}$	$N = \langle t_1^{\frac{p}{2n}}, t_2, t_3 \rangle$
	$\eta_4 \langle \alpha \rangle$	$\frac{p}{4n} \in \mathbb{N}$	$L_2 = \langle t_1^{\frac{p}{4n}} t_2, t_2^2, t_3 \rangle$
$\mathbb{Z}_{\frac{4p}{n}}$	$\eta_2 \langle \alpha \rangle$	$\frac{p}{n} \in \mathbb{N}, \ n \in 2\mathbb{N}$	$N_2 = \langle t_1^{\frac{p}{n}} t_3, t_2, t_3^2 \rangle$
	$\zeta_5\langle \alpha \rangle$	$\frac{p}{2n} \in \mathbb{N}, \ n \in 2\mathbb{N} - 1$	$K_5 = \langle t_{1_{m}}^{\frac{p}{2n}} t_2, t_2^2 t_3, t_3^2 \rangle$
$\mathbb{Z}_{\frac{p}{n}} \times \mathbb{Z}_4$	$\zeta_4 \langle \alpha, t_2 \rangle$	$\frac{p}{2n} \in \mathbb{N}, \ n \in 2\mathbb{N} - 1$	$K_4 = \langle t_1^{\frac{p}{2n}}, t_2^2 t_3, t_3^2 \rangle$
$\mathbb{Z}_{\frac{2p}{n}} \times \mathbb{Z}_2$	$\eta_1\langle \alpha, t_3 \rangle$	$\frac{p}{n} \in \mathbb{N}, \ n \in 2\mathbb{N}$	$N_1 = \langle t_1^{\frac{p}{n}}, t_2, t_3^2 \rangle$
	$\zeta_2 \langle \alpha, t_3 \rangle$	$\frac{p}{2n} \in \mathbb{N}, n \in 2\mathbb{N}$	$K_2 = \langle t_1^{\frac{p}{2n}} t_2, t_2^2, t_3^2 \rangle$
	$\zeta_3 \langle \alpha, t_2 \rangle$	$\frac{p}{2n} \in \mathbb{N}, \ n \in 2\mathbb{N}$	$K_3 = \langle t_{1_0}^{\frac{p}{2n}} t_3, t_2^2, t_3^2 \rangle$
	$\zeta_6 \langle \alpha, t_2 \rangle$	$\frac{p}{2n} \in \mathbb{N}, \ n \in 2\mathbb{N} - 1,$	$K_6 = \langle t_1^{\frac{p}{2n}} t_3, t_2^2 t_3, t_3^2 \rangle$
		$p \in 2\mathbb{N} + 2$	
$\mathbb{Z}_{\frac{p}{2n}} \times \mathbb{Z}_2$	$\eta_3\langle \alpha, t_2 \rangle$	$\frac{p}{4n} \in \mathbb{N}$	$L_1 = \langle t_1^{\frac{p}{4n}}, t_2^2, t_3 \rangle$
$\mathbb{Z}_{\frac{p}{n}} \times \mathbb{Z}_2 \times \mathbb{Z}_2$	$\zeta_1\langle \alpha, t_2, t_3 \rangle$	$\frac{p}{2n} \in \mathbb{N}, \ n \in 2\mathbb{N}$	$K_1 = \langle t_1^{\frac{\nu}{2n}}, t_2^2, t_3^2 \rangle$

TABLE 2

Proof. First we deal with the case $K_5 = \langle t_1^{\frac{p}{2n}} t_2, t_2^2 t_3, t_3^2 \rangle$, where $\frac{p}{2n} \in \mathbb{N}, n \in 2\mathbb{N} - 1$. We will show that $\langle \alpha \rangle$ genetates the other elements in the following quotient group

$$\pi_3/K_5 = \langle t_1, t_2, t_3, \alpha \rangle / \langle t_1^{\frac{p}{2n}} t_2, t_2^2 t_3, t_3^2 \rangle.$$

Received October 24, 2018; Accepted November 7, 2018.

 $Key\ words\ and\ phrases.$ affine conjugacy, almost Bieberbach group, group action, Heisenberg group.

 $\odot 2019$ Korean Mathematical Society

285

²⁰¹⁰ Mathematics Subject Classification. Primary 57S25; Secondary 57M05, 57S17.

From the following relations

 $\alpha^{\frac{p}{n}}K_5 = (\alpha^2)^{\frac{p}{2n}}K_5 = t_1^{\frac{p}{2n}}K_5 = t_1^{\frac{p}{2n}}t_2^2t_3K_5 = t_2t_3K_5 = t_2t_3t_2^2t_3K_5 = t_2^3K_5,$ $t_2^2K_5 = t_2^2t_3^2K_5 = t_3K_5, \quad t_2^4K_5 = t_3^2K_5 = K_5,$

we have

$$\alpha^{\frac{2p}{n}}K_5 = t_2^6K_5 = t_2^2K_5 = t_3K_5, \quad \alpha^{\frac{4p}{n}}K_5 = t_3^2K_5 = K_5, \\ (\alpha^{\frac{p}{n}}K_5)(t_2K_5) = \alpha^{\frac{p}{n}}t_2K_5 = t_2^3t_2K_5 = t_2^4K_5 = K_5.$$

Therefore we can obtain that $t_2K_5 = (\alpha K_5)^{-\frac{p}{n}}$ and

$$\pi_3/K_5 = \langle t_1, t_2, t_3, \alpha \rangle / \langle t_1^{\frac{p}{2n}} t_2, t_2^2 t_3, t_3^2 \rangle = \langle \alpha K_5 \rangle \cong \mathbb{Z}_{\frac{4p}{n}}.$$

Next we shall deal with the case $K_6 = \langle t_1^{\frac{p}{2n}} t_3, t_2^2 t_3, t_3^2 \rangle$, where $\frac{p}{2n} \in \mathbb{N}, n \in 2\mathbb{N} - 1, p \in 2\mathbb{N} + 2$. In this case, since n is an odd number, we have

$$\alpha t_2 \alpha^{-1} K_6 = t_2^{-1} \alpha t_3^{-n} \alpha^{-1} K_6 = t_2^{-1} t_3^n K_6 = t_2 t_3^{n+1} K_6 = t_2 K_6.$$

The following relations

$$\alpha^{\frac{p}{n}}K_6 = t_1^{\frac{p}{2n}}K_6 = t_1^{\frac{p}{2n}}t_3^2K_6 = t_3K_6, \quad \alpha^{\frac{2p}{n}}K_6 = t_3^2K_6 = K_6,$$

$$t_2^2K_6 = t_2^2t_3^2K_6 = t_3K_6 = \alpha^{\frac{p}{n}}K_6, \quad t_2^4K_6 = t_3^2K_6 = K_6$$

show that

$$\pi_3/K_6 = \langle t_1, t_2, t_3, \alpha \rangle / \langle t_1^{\frac{1}{2n}} t_3, t_2^2 t_3, t_3^2 \rangle$$

= $\langle \alpha K_6, t_2 K_6 \mid (\alpha K_6)^{\frac{p}{n}} = (t_2 K_6)^2, (t_2 K_6)^4 = 1, (\alpha t_2) K_6 = (t_2 \alpha) K_6 \rangle$
 $\cong \mathbb{Z}_{\frac{2p}{n}} \times \mathbb{Z}_2.$

The other cases can be done similarly.

Theorem 3.5. Table 3 gives a complete list of all free actions (up to topological conjugacy) of finite abelian groups G on \mathcal{N}_p which yield an orbit manifold homeomorphic to \mathcal{H}/π_4 .

TABLE	3
-------	---

Group G	Generators	AC classes of normal nilpotent subgroups	
$\mathbb{Z}_2 \times \mathbb{Z}_2$	$\langle \beta, \alpha \rangle$	p = 4n	$N_1 = \langle t_1, t_2, t_3 \rangle$
$\mathbb{Z}_2 \times \mathbb{Z}_4$	$^{\eta}\langle\beta,\alpha\rangle$	p = 2n	$N_2 = \langle t_1, t_2 t_3, t_3^2 \rangle$
	$\zeta_1\langle \alpha, \beta \rangle$	p = 8n	$L_1 = \langle t_1 t_2, t_2^2, t_3 \rangle$
$\mathbb{Z}_4 \times \mathbb{Z}_4$	$\zeta_2\langle\beta,\alpha\rangle$	p = 4n	$L_2 = \langle t_1 t_2 t_3, t_2^2, t_3^2 \rangle$

Proof. First we deal with the case $L_1 = \langle t_1 t_2, t_2^2, t_3 \rangle$. From the following relations,

$$\alpha^2 L_1 = t_3 L_1 = L_1, \quad \beta^2 L_1 = t_1 L_1 = t_1 t_2^2 L_1 = t_2 L_1, \quad \beta^4 L_1 = t_2^2 L_1 = L_1,$$

286

we obtain that

$$\pi_4/L_1 = \langle t_1, t_2, t_3, \alpha, \beta \rangle / \langle t_1 t_2, t_2^2, t_3 \rangle = \langle \alpha L_1, \beta L_1 \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_4.$$

For the case of $L_2 = \langle t_1 t_2 t_3, t_2^2, t_3^2 \rangle$, we know that $\alpha^4 L_2 = t_3^2 L_2 = L_2$. Since $[t_2, t_3] = 1$, we have

$$\beta^{2}L_{2} = t_{1}L_{2} = t_{1}t_{2}^{2}t_{3}^{2}L_{2} = t_{2}t_{3}L_{2}, \quad \beta^{4}L_{2} = t_{2}^{2}t_{3}^{2}L_{2} = L_{2},$$

$$t_{2}L_{2} = t_{1}t_{2}t_{3}t_{2}L_{2} = t_{1}t_{3}L_{2} = (\beta L_{2})^{2}(\alpha L_{2})^{2}.$$

It is easy to show that

$$\pi_4/L_2 = \langle t_1, t_2, t_3, \alpha, \beta \rangle / \langle t_1 t_2 t_3, t_2^2, t_3^2 \rangle = \langle \beta L_2, \alpha L_2 \rangle \cong \mathbb{Z}_4 \times \mathbb{Z}_4.$$

Acknowledgement. The authors wish to thank Dr. Daehwan Koo for pointing out flaws and for valuable comments.

References

 D. Choi and J. Shin, Free actions of finite abelian groups on 3-dimensional nilmanifolds, J. Korean Math. Soc. 42 (2005), no. 4, 795–826.

Dongsoon Choi Daejeon Bongmyeong Middle School Daejeon 34189, Korea *Email address:* stsk23@hanmail.net

JOONKOOK SHIN DEPARTMENT OF MATHEMATICS EDUCATION CHUNGNAM NATIONAL UNIVERSITY DAEJEON 34134, KOREA Email address: jkshin@cnu.ac.kr