DOI QR코드

DOI QR Code

Physiological and Proteome Responses of Korean F1 maize (Zea mays L.) Hybrids to Water-deficit Stress during Tassel Initiation

옥수수 영양생장기 한발 스트레스에 의한 광합성의 생리적 반응 및 프로테옴 변화 분석

  • Bae, Hwan Hee (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Kwon, Young-Sang (Environment Toxicology Research Center, Korea Institute of Toxicology) ;
  • Son, Beom-Young (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Jung-Tae (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Go, Young Sam (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Sun-Lim (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Baek, Seong-Bum (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Shin, Seonghyu (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Sang Gon (Gyeongnam Oriental Anti-Aging Institute)
  • 배환희 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 권영상 (안전성평가연구소 환경독성연구센터) ;
  • 손범영 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 김정태 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 고영삼 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 김선림 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 백성범 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 신성휴 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 김상곤 ((재)경남한방항노화연구원)
  • Received : 2019.09.05
  • Accepted : 2019.10.24
  • Published : 2019.12.31

Abstract

Severe droughts in spring have occurred frequently in Korea in recent years, exerting a critical impact on corn yield. Therefore, it is necessary to find physiological and/or molecular indicators of the response to drought stress in maize plants. In this study, we investigated the effects of water-deficit stress on two Korean elite F1 maize hybrids, Ilmichal and Gwangpyeongok, by withholding water for 10 days at tassel initiation. The water deficit drastically reduced the relative leaf water content, leaf number, leaf area, and stem length, leading to dry matter reduction. Moreover, it reduced the SPAD values and stomatal conductance of leaves in drought-stressed plants of both hybrids. Importantly, the number of leaves and SPAD value were non-destructive and easy to investigate in response to water-deficit stress, suggesting that they may be useful indicators for screening drought-tolerant genetic resources. We detected more than 100 spots that were differentially accumulated under drought stress. Of these spots, a total of 21 protein spots (≥1.5-fold) from drought-exposed maize leaves were successfully analyzed by MALDI-TOF-TOF mass spectrometry. Functional annotation using Gene Ontology analysis revealed that most of the identified proteins were involved in carbohydrate metabolism, stress response fatty acid catabolism, photosynthesis, energy metabolism, and transport. The protein expression levels were increased in both Ilmichal and Gwangpyeongok, except for triosephosphate isomerase, fructose-bisphosphate aldolase, and an uncharacterized protein. The lactoylglutathione lyase delta (3,5)-delta (2,4)-dienoyl-CoA isomerase was overexpressed in Gwangpyeongok only. The results obtained from this study suggest that the drought-specific genes may be useful as molecular markers for screening drought-tolerant maize genotypes.

본 연구는 옥수수 유수형성기(본 잎 6개)에 10일 동안 수분부족처리를 하였을 때 F1 옥수수 교잡종 식물체의 생리적 반응과 프로테옴 변화를 분석한 것이다. 실험에 사용한 품종은 일미찰과 광평옥이었다. 1. 정상구에 비해 수분이 결핍된 옥수수 교잡종에서는 평균 3개의 잎이 감소했고, 잎 면적은 각각 32~34 % 감소했으며, 경장은 일미찰에서는 약 14%, 광평옥에서는 약 27% 줄었다. 웅수 길이는 일미찰과 광평옥에서 각각 74, 82%가 감소하였다. 2. V4~6 엽기 때 10일간의 수분 결핍 처리는 옥수수의 모든 부분에서 건물중을 감소시켰으며 특히, 줄기의 건물중이 잎과 뿌리보다 훨씬 감소하였다. 일미찰과 광평옥에서 잎과 줄기의 건물중은 각각 약 83%, 73% 감소했으며, 수술 건물중은 각각 약 35, 86% 감소했다. 3. V4~6 엽기 때 10일간의 수분 결핍 처리는 옥수수의 모든 부분에서 건물중을 감소시켰으며 특히, 줄기의 건물중이 잎과 뿌리보다 훨씬 감소하였다. 일미찰과 광평옥에서 잎과 줄기의 건물중은 각각 약 83%, 73% 감소했으며, 수술 건물중은 각각 약 35, 86% 감소했다. 4. 이차원전기영동방법으로 정상구와 한발 스트레스를 받은 교잡종에서 다른 단백질 발현양상을 나타내는 21 개의 단백질 spot을 확인하였다. MALDI-TOF MS (matrix assisted laser desorption ionization-time of flight mass spectrometry) 및 단백질 데이터베이스 분석을 통해 21개의 단백질 spot 중 탄수화물 대사에 관련된 단백질이 8개, 스트레스 관련 단백질이 6개, 지방산 이화작용 및 광합성에 관련된 단백질이 각각 2개, 에너지 대사 및 수송에 관련된 단백질이 각각 1개가 분석되었다. 5. 이들 단백질 중 Triosephosphate isomerase, fructose-bisphosphate aldolase, uncharacterized protein을 제외하고 한발 스트레스 처리시 일미찰과 광평옥 모두에서 단백질 발현양이 증가하였으며, lactoylglutathione lyase, delta 3,5-delta 2,4-dienoyl-CoA isomerase은 광평옥에서만 과발현되었다.

Keywords

References

  1. Abendroth, L. J., R. W. Elmore, M. J. Boyer, and S. K. Marlay. 2011. Corn growth and development. PMR 1009. Iowa State University Extension, Ames, Iowa.
  2. Abrecht, D. G. and P. S. Carberry. 1993. The influence of water deficit prior to tassel initiation on maize growth, development and yield. Field Crops Research 31 : 55-69. https://doi.org/10.1016/0378-4290(93)90050-W
  3. Araus, J. L., G. A. Slafer, M. P. Reynolds, and C. Royo. 2002. Plant breeding and water relations in C3 cereals: what to breed for? Ann. Bot. 89 : 925-940. https://doi.org/10.1093/aob/mcf049
  4. Bassetti, P. and M. E. Westgate. 1993. Water deficit affects receptivity of maize silks. Crop Sci. 33 : 279-282. https://doi.org/10.2135/cropsci1993.0011183X003300020013x
  5. Benesova, M., D. Hola, L. Fischer, P. L. Jedelsky, F. Hnilicka, N. Wilhelmova, O. Rothova, M. Kocova, D. Prochazkova, J. Honnerova, L. Fridrichova, and H. Hnilickova. 2012. The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to shortterm dehydration? PLoS ONE 7:e38017. https://doi.org/10.1371/journal.pone.0038017
  6. Claassen, M. M. and R. H. Shaw. 1970. Water Deficit Effects on Corn. I. Grain Components. Agronomy Journal 62 : 652-655. https://doi.org/10.2134/agronj1970.00021962006200050032x
  7. Cordell, D., A. Rosemarin, J. Smit, and A. Schroder. 2011. Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere 84 : 747-758. https://doi.org/10.1016/j.chemosphere.2011.02.032
  8. Cramer, G. R., S. C. Van Sluyter, D. W. Hopper, D. Pascovici, T. Keighley, and P. A. Haynes. 2013. Proteomic analysis indicates massive changes in metabolism prior to the inhibition of growth and photosynthesis of grapevine (Vitis vinifera L.) in response to water deficit. BMC Plant Biol. 13 : 49. https://doi.org/10.1186/1471-2229-13-49
  9. Dai, A. 2012. Increasing drought under global warming in observations and models. Nat. Clim. Change 3 : 52-58. https://doi.org/10.1038/nclimate1633
  10. Denmead, O. T. and R. H. Shaw. 1960. The effects of soil moisture stress at different stages of growth on the development and yield of corn. Agron. J. 52 : 272-274. https://doi.org/10.2134/agronj1960.00021962005200050010x
  11. de Vienne, D., A. Leonardi, C. Damerval, and M. Zivy. 1999. Genetics of proteome variation for QTL characterization: application to drought-stress responses in maize. J. Exp. Bot. 50 : 303-309. https://doi.org/10.1093/jxb/50.332.303
  12. Eck, H. V. 1986. Effects of Water Deficits on Yield, Yield Components, and Water Use Efficiency of Irrigated Corn. Agron. J. 78 : 1035-1040. https://doi.org/10.2134/agronj1986.00021962007800060020x
  13. Farre, I. and J. M. Faci. 2006. Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment. Agric. Water Manag. 83 : 135-143. https://doi.org/10.1016/j.agwat.2005.11.001
  14. Hayano-Kanashiro, C., C. Calderon-Vazquez, E. Ibarra-Laclette, L. Herrera-Estrella, and J. Simpson. 2009. Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation. PLoS One 4: e7531. https://doi.org/10.1371/journal.pone.0007531
  15. Heiniger, R. W. 2001. The impact of early drought on corn yield. North Carolina State University.
  16. Hsiao, T. C. 1973. Plant responses to water stress. Annual Review of Plant physiology 24 : 519-570. https://doi.org/10.1146/annurev.pp.24.060173.002511
  17. Hu, X., X. Wu, C. Li, M. Lu, T. Liu, Y. Wang, and W. Wang. 2012. Abscisic acid refines the synthesis of chloroplast proteins in maize (Zea mays) in response to drought and light. PLoS One 7: e49500. https://doi.org/10.1371/journal.pone.0049500
  18. Kim, S. G., S. T. Kim, Y. Kang, Y. Wang, W. Kim, and K. Y. Kang. 2008. Proteomic analysis of reactive oxygen species (ROS)-related proteins in rice roots. Plant Cell Rep. 27 : 363-375. https://doi.org/10.1007/s00299-007-0441-5
  19. Kim, S. G., H. H. Bae, H. J. Jung, J. S. Lee, J. T. Kim, T. H. Go, B. Y. Son, S. B. Baek, Y. U. Kwon, M. O. Woo, and S. H. Shin. 2014. Physiological and protein profiling response to drought stress in KS141, a Korean maize inbred line. J. Crop Sci. Biotechnol. 17 : 273-280. https://doi.org/10.1007/s12892-014-0110-5
  20. Kim, S. G., J. S. Lee, J. T. Kim, Y. S. Kwon, D. W. Bae, H. H. Bae, B. Y. Son, S. B. Baek, Y. U. Kwon, M. O. Woo, and S. H. Shin. 2015. Physiological and proteomic analysis of the response to drought stress in an inbred Korean maize line. Plant Omics. J. 8 : 159-168.
  21. Li, R., W. Wang, W. Wang, F. Li, Q. Wang, Y. Xu, and S. Wang. 2015. Overexpression of a cysteine proteinase inhibitor gene from jatgropha curcas confers enhanced tolerance to salinity stress. E. J. Biotechnology 18 : 368-375. https://doi.org/10.1016/j.ejbt.2015.08.002
  22. Lobell, D. B., M. Banziger, C. Magorokosho, and B. Vivek. 2011. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1 : 42-45. https://doi.org/10.1038/nclimate1043
  23. Nayyar, H. and D. Gupta. 2006. Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ. Exp. Bot. 58 : 106-113. https://doi.org/10.1016/j.envexpbot.2005.06.021
  24. NeSmith, D. S. and J. T. Ritchie. 1992. Maize (Zea mays L.) response to a severe soil water-deficit during grain-filling. Field Crops Res. 29 : 23-35. https://doi.org/10.1016/0378-4290(92)90073-I
  25. Pechanova, O., T. Taka, J. Samaj, and T. Pechan 2013. Maize proteomics: an insight into the biology of an important cereal crop. Proteomics 13 : 637-662. https://doi.org/10.1002/pmic.201200275
  26. Riccardi, F., P. Gazeau, M. P. Jacquemot, D. Vincent, and M. Zivy. 2004. Deciphering genetic variations of proteome responses to water deficit in maize leaves. Plant Physiol. Biochem. 42 : 1003-1011. https://doi.org/10.1016/j.plaphy.2004.09.009
  27. Smart, R. E. and Bingham, G. E. 1974. Rapid estimates of relative water content. Plant Physiology 53(2) : 258-260. https://doi.org/10.1104/pp.53.2.258
  28. Sugihara, K., N. Hanagata, Z. Dubinsky, S. Baba, and I. Karube. 2000. Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the manrove Bruguiera gymnorrhiza. Plant Cell Physiol. 41 : 1279-1285. https://doi.org/10.1093/pcp/pcd061
  29. Song, C., F. Zeng, W. Feibo, W. Ma, and G. Zhang. 2015. Proteomic analysis of nitrogen stress-responsive proteins in two rice cultivars differing in N utilization efficiency. Journal of Integrated Omics 78-87.
  30. Uhrig, R. G., A. M. Labandera, and G. B. Moorhead. 2013. Arabidopsis PPP family of serine/threonine protein phosphatases: many targets but few engines. Trends Plant Sci. 18 : 505-513. https://doi.org/10.1016/j.tplants.2013.05.004
  31. Yordanov, I., V. Velikova, and T. Tsonev. 2003. Plant responses to drought and stress tolerance. Bulg. J. Plant Physiol. Special issue 187-206.
  32. Zheng, J., J. Fu, M. Gou, J. Huai, Y. Liu, M. Jian, Q. Huang, X. Guo, Z. Dong, H. Wang, and G. Wang. 2010. Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Mol. Biol. 72 : 407-421. https://doi.org/10.1007/s11103-009-9579-6
  33. Zlatev, Z. S. and I. T. Yordanov. 2004. Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Bulgarian Journal of Plant Physiology 30 : 3-18.