DOI QR코드

DOI QR Code

SWRO 플랜트의 RAM 분석을 위한 시뮬레이션 모델 연구

A Study on Simulation Model for RAM Analysis of SWRO Plant

  • 투고 : 2018.12.27
  • 심사 : 2019.11.17
  • 발행 : 2019.12.31

초록

해수담수화(SWRO, Sea Water Reverse Osmosis) 플랜트는 장기적이고 지속적인 담수 생산을 위하여 설계단계부터 플랜트의 가용도를 고려하여야 하며, 시간의 흐름에 따라 다양한 형태의 노후 현상이 진행되어 시스템 성능의 저하가 발생하므로 가용도 유지를 위한 고장정비 및 예방정비 계획 수립 등이 필요하다. 해수담수화 플랜트와 같이 복잡한 공학구조로 구성된 플랜트 분야에서는 시스템의 신뢰도 혹은 가용도를 수리적인 방법으로 추정하는데 어려움이 있다. 본 연구는 해수담수화 플랜트에 특화된 소프트웨어 개발을 위하여, RAM 분석 프레임워크와 모델링 방법을 개발하고, 가용도 산출을 위한 이산사건 시뮬레이션 모델을 제안한다. 플랜트 정비의 특성을 고려하여 고장 정비 발생 시, 단일 부품의 수리/교체 뿐만 아니라 분해 정비 수준에 따라 접근 가능한 모든 부품을 동시 정비하는 예방정비 정책을 제안하고, 제안된 방법론에 따라 시뮬레이션 모델 및 프로토타입을 개발하였다. 이를 활용하여 국내외에 건설된 해수담수화 플랜트의 현장 데이터를 기반으로 시스템의 가용도 및 가동률 등을 추정 사례 연구를 수행하였고, 그 결과 실제 플랜트의 가용도와 근접한 결과를 얻었다.

The Sea Water Reverse Osmosis (SWRO) plant should take into account the availability of the plant from the design stage for long-term and continuous fresh water production. As it occurs, it is necessary to establish a corrective maintenance plan and preventive maintenance plan to maintain availability. In the field of complex engineering structures such as seawater desalination plants, it is difficult to estimate the reliability or availability of the system in a mathematical way. This study develops RAM analysis framework and model, and proposes discrete event simulation model as a application sowtware specialized for seawater desalination plant. Considering the characteristics of the plant maintenance, in case of corrective maintenance, we propose a preventive maintenance policy that not only repairs or replaces a single-broken part, but also simultaneously maintains all accessible parts according to the level of overhaul. A case study was conducted to estimate the availability of the system based on the field data of the seawater desalination plant in Korea and Saudi Arabia. The result was close to the expected availability of the plant.

키워드

참고문헌

  1. Barringer & Associates, Inc., Weibull Database, http://www.barringer1.com/wdbase.htm, accessed11/10/2018.
  2. Fuchs, M. (2011) ExcelFormat Library, available at https://www.codeproject.com/Articles/42504/ExcelFormat-Library, accessed 6/05/2016.
  3. Chung, I. H., and S. J. Park (2008) "Effect Analysis of Factors for Improving Accuracy of RAM Simulation in Weapon System", Journal of the Korea Institute of Military Science and Technology, 11(6), 102-116.
  4. Gupta, S., Tewari, P. C., & Sharma, A. K. (2009) "An availability simulation model and performance analysis of a coal handling unit of a typical thermal plant", South African Journal of Industrial Engineering, 20(1), 159-172.
  5. Jung, Inho, Jaewoong Choi, and Changbeom Choi. (2017) "Web-based Distributed Experimental Frame for Discrete Event Simulation System." Journal of the Korea Society for Simulation, 26(2), 9-17. https://doi.org/10.9709/JKSS.2017.26.2.009
  6. Kim D. H., H. S. Noh, I. H. Jung, and S. C. Han (2006) "RAMSim - Discrete Event Simulator for evaluating RAM indices in Weapon Systems", Proceedings of Korea Simulation Society Conference, 80-85.
  7. Kim H. R. and S. Y. Choi (2010) "A Hierarchical RAM Simulation Model Framework", Journal of the Korea Institute of Military Science and Technology, 13(1), 41-49.
  8. Kim H. R, I. H. Kim, and S. Y. Choi (2011) "A Study on a Simulation Model to Analyze the Availability of a SoS", Journal of the Korea Institute of Military Science and Technology, 14(6), 1049-1057. https://doi.org/10.9766/KIMST.2011.14.6.1049
  9. Lee H. C., and I. J. Hwang (2016) "A Study on the Availability Evaluation with Failure Density Function of Equipment of Small-scale Plant", The KSFM Journal of Fluid Machinery, 19(3), 33-36. https://doi.org/10.5293/kfma.2016.19.3.033
  10. Lee, Jinho (2019) "A Theoretical Framework on Reliability Optimization for Improving System Operational Availability." Journal of Applied Reliability 19(3), 256-64. https://doi.org/10.33162/JAR.2019.09.19.3.256
  11. Lim, Jun Hyoung, Dong-Yeon Won, Hyun Su Sim, et al. (2018) "A Study on Condition-based Maintenance Policy using Minimum-Repair Block Replacement." Journal of Applied Reliability, 18(2), 114-21. https://doi.org/10.33162/JAR.2018.06.18.2.114
  12. MacDougall, M. H. (1980). SMPL - A Simple Portable Simulation Language. Sunny Vale, CA, USA: Amdahl.
  13. Marquez, A. C., Heguedas, A. S., & Iung, B. (2005) "Monte Carlo-based assessment of system availability. A case study for cogeneration plants", Reliability Engineering & System Safety, 88(3), 273-289. https://doi.org/10.1016/j.ress.2004.07.018
  14. Rao, M. S., & Naikan, V. N. (2016) "Review of Simulation Approaches in Reliability and Availability Modeling", International Journal of Performability Engineering, 12(4), 369-388.
  15. Yun W. Y, Y. J. Han, G. E. Park, C. H. Choi, and D. J. Jung (2011) "Simulation Modeling for RAM Analysis of a Searching System", Journal of the Korean Society for Quality Management, 39(3), 353-364. https://doi.org/10.7469/JKSQM.2011.39.3.353