DOI QR코드

DOI QR Code

Technical Trends of Metal Nanowire-Based Electrode

금속 나노와이어 기반 전극 기술 개발 동향

  • Shin, Yoo Bin (School of Advanced Materials Engineering, Chonbuk National University) ;
  • Ju, Yun Hee (School of Advanced Materials Engineering, Chonbuk National University) ;
  • Kim, Jong-Woong (School of Advanced Materials Engineering, Chonbuk National University)
  • 신유빈 (전북대학교 신소재공학부) ;
  • 주윤희 (전북대학교 신소재공학부) ;
  • 김종웅 (전북대학교 신소재공학부)
  • Received : 2019.12.12
  • Accepted : 2019.12.17
  • Published : 2019.12.30

Abstract

Metallic nanowires (MNWs) have recently been considered as one of the most promising candidates for flexible electrodes of advanced electronics including wearable devices, electronic skins, and soft robotics, since they have high aspect ratio in physical shape, low percolation threshold, high ductility and optical transparency. Herein, we review the latest findings related to the MNWs and discuss the properties and potentials of this material that can be used in implementation of various advanced electronic devices.

Keywords

References

  1. K. P. Bera, G. Haider, M. Usman, P. K. Roy, H. I. Lin, Y. M. Liao, C. R. P. Inbaraj, Y. R. Liou, M. Kataria, K. L. Lu, and Y. F. Chen, "Trapped Photons Induced Ultrahigh External Quantum Efficiency and Photoresponsivity in Hybrid Graphene/Metal-Organic Framework Broadband Wearable Photodetectors", Adv. Funct. Mater., 28, 1804802 (2018). https://doi.org/10.1002/adfm.201804802
  2. S. B. Choi, C. R. Lee, S. B. Jung, and J. W. Kim, "Technical Trends of Stretchable Electrodes", J. Microelectron. Packag. Soc., 26(3), 23 (2019).
  3. C. F. Guo, and Z. Ren, "Flexible transparent conductors based on metal nanowire networks", Mater. Today., 18(3), 143 (2015). https://doi.org/10.1016/j.mattod.2014.08.018
  4. S. Gupta, C. N. Murthy, and C. Ratna Prabha, "Recent advances in carbon nanotube based electrochemical biosensors", Int. J. Biol. Macromol., 108, 687 (2018). https://doi.org/10.1016/j.ijbiomac.2017.12.038
  5. T. Xie, L. Zhang, Y. Wang, Y. Wang, and X. Wang, "Graphenebased supercapacitors as flexible wearable sensor for monitoring pulse-beat", Ceram. Int., 45(2), 2516 (2019). https://doi.org/10.1016/j.ceramint.2018.10.181
  6. J. H. Cho, S. H. Ha, and J. M. Kim, "Transparent and stretchable strain sensors based on metal nanowire microgrids for human motion monitoring", Nanotechnology, 29(15), 155501 (2018). https://doi.org/10.1088/1361-6528/aaabfe
  7. W. Yuan, J. Yand, K. Yang, and H. Peng, "High-Performance and Multifunctional Skinlike Strain Sensors Based on Graphene/ Springlike Mesh Network", ACS Appl. Mater. Interfaces., 10(23), 19906 (2018). https://doi.org/10.1021/acsami.8b06496
  8. J. Ramirez, D. Rodriquez, A. D. Urbina, and A. M. Cardenas, "Combining High Sensitivity and Dynamic Range: Wearable Thin-Film Composite Strain Sensors of Graphene, Ultrathin Palladium, and PEDOT:PSS", ACS Appl. Nano Mater., 2(4), 2222 (2019). https://doi.org/10.1021/acsanm.9b00174
  9. Y. Sun, B. Gates, B. Mayers, and Y. Xia, "Crystalline Silver Nanowires by Soft Solution Processing", Nano letters, 2, 165, (2002). https://doi.org/10.1021/nl010093y
  10. J. Lee, P. Lee, H. Lee, D. Lee, S. S. Lee, and S. H. Ko, "Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel", Nanoscale, 4, 6408, (2012). https://doi.org/10.1039/c2nr31254a
  11. B. Li, S. Ye, I. E. Stewart, S. Alvarez, and B. J. Wiley, "Synthesis and Purification of Silver Nanowires To Make Conducting Films with a Transmittance of 99%", Nano letters, 15(10), 6722, (2015). https://doi.org/10.1021/acs.nanolett.5b02582
  12. Y. Chang, M. L. Lye, and H. C. Zeng, "Large-Scale Synthesis of High-Quality Ultralong Copper Nanowires", Langmuir, 21, 3746, (2005). https://doi.org/10.1021/la050220w
  13. S. Ye, A. R. Rathmell, Y. C. Ha, A. R. Wilson, and B. J. Wiley, "The Role of Cuprous Oxide Seeds in the One-Pot and Seeded Syntheses of Copper Nanowires", Small, 10, 1771, (2014). https://doi.org/10.1002/smll.201303005
  14. H. Guo, N. Lin, Y. Chen, Z. Wang, Q. Xie, T. Zheng, N. Gao, S. Li, J. Kang, D. Cai, and D. L. Peng, "Copper Nanowires as Fully Transparent Conductive Electrodes", Sci. Rep., 3, 2323, (2013). https://doi.org/10.1038/srep02323
  15. F. Kim, K. Sohn. J. Wu, and J. Huang, "Chemical Synthesis of Gold Nanowires in Acidic Solutions", J. Am. Chem. Soc., 130(44), 14442 (2008). https://doi.org/10.1021/ja806759v
  16. D. G. Kim, Y. Kim, and J. W. Kim, "Recent Trends in Development of Ag Nanowire-based Transparent Electrodes for Flexible.Stretchable Electronics", J. Microelectron. Packag. Soc., 22(1), 7 (2015). https://doi.org/10.6117/kmeps.2015.22.1.007
  17. Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu, and Q. Pei, "Highly Flexible Silver Nanowire Electrodes for Shape-Memory Polymer Light-Emitting Diodes", Adv. Mater., 23, 664 (2011). https://doi.org/10.1002/adma.201003398
  18. K. H. Ok, J. Kim, S. R. Park, Y. Kim, C. j. Lee, S. J. Hong, M. G. Kwak, N. Kim, C. J. Han, and J. W. Kim, "Ultra-thin and smooth transparent electrode for flexible and leakage-free organic light-emitting diodes", Sci. Rep., 5, 9464 (2015). https://doi.org/10.1038/srep09464
  19. J. Lee, K. An, P. Won, Y. Ka, H. Hwang, H. Moon, Y. Kwon, S. Hong, C. Kim, C. Lee, and S. H. Ko, "A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes", Nanoscale, 9, 1978 (2017). https://doi.org/10.1039/C6NR09902E
  20. D. K. Kwon, S. J. Lee, and J. M. Myoung, "High-performance flexible ZnO nanorod UV photodetectors with a network- structured Cu nanowire electrode", Nanoscale, 8, 16677, (2016). https://doi.org/10.1039/C6NR05256H
  21. D. Kim, J. Kwon, J. Jung, K. Kim, H. Lee, J. Yeo, S. Hong, S. Han, and S. H. Ko, "A Transparent and Flexible Capacitive-Force Touch Pad from High-Aspect-Ratio Copper Nanowires with Enhanced Oxidation Resistance for Applications in Wearable Electronics", Small Methods, 2, 1800077, (2018).
  22. S. Choi, J. Park, W. Hyun, J. Kim, J. Kim, Y. B. Lee, C. Song, H. J. Hwang, J. H. Kim, T. Hyeon, and D. H. Kim, "Stretchable Heater Using Ligand-Exchanged Silver Nanowire Nanocomposite for Wearable Articular Thermotherapy", ACS Nano, 9, 6626, (2015). https://doi.org/10.1021/acsnano.5b02790
  23. M. Yang, Z. D. Hood, X. Yang, M. Chi and Y. Xia "Facile synthesis of Ag@Au core-sheath nanowires with greatly improved stability against oxidation", Chem. Commun, 53, 1965, (2017). https://doi.org/10.1039/C6CC09878A
  24. S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh and W. Cheng, "A wearable and highly sensitive pressure sensor with ultrathin gold nanowires", Nature Communications, 5, 3132, (2014). https://doi.org/10.1038/ncomms4132
  25. S. Choi, S. I. Han, D. Jung, H. J. Hwang, C. Lim, S. Bae, O. K. Park, C. M. Tschabrunn, M. Lee, S. Y. Bae, J. W. Yu, J. H. Ryu, S. W. Lee, K. Park, P. M. Kang, W. B. Lee, R. Nezafat, T. Hyeon, and D. H. Kim, "Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics", Nature Nanotechnology, 13, 1048, (2018). https://doi.org/10.1038/s41565-018-0226-8
  26. S. Gong, D. T. H. Lai, B. Su, K. J. Si, Z. Ma, L. W. Yap, P. Guo, and W. Cheng, "Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors", Adv. Electron. Mater., 1, 1400063 (2015). https://doi.org/10.1002/aelm.201400063
  27. J. T. Muth, D. M. Vogt, R. L. Truby, Y. Menguc, D. B. Kolesky, R. J. Wood, and J. A. Lewis, "Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers", Adv. Mater., 26, 6307 (2014). https://doi.org/10.1002/adma.201400334
  28. T. Q. Trung, N. T. Tien, D. Kim, M. Jang, O. J. Yoon, and N. E. Lee, "A Flexible Reduced Graphene Oxide Field-Effect Transistor for Ultrasensitive Strain Sensing", Adv. Funct. Mater., 24, 117 (2014). https://doi.org/10.1002/adfm.201301845