DOI QR코드

DOI QR Code

A Study on Thermal Properties of Epoxy Composites with Hybrid Fillers

하이브리드 필러를 함유한 에폭시 복합체의 열적 특성 연구

  • Lee, Seungmin (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Rho, Hokyun (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Lee, Sang Hyun (Department of Advanced Chemicals & Engineering, Chonnam National University)
  • 이승민 (전남대학교 화학공학부) ;
  • 노호균 (전남대학교 화학공학부) ;
  • 이상현 (전남대학교 화학공학부)
  • Received : 2019.09.23
  • Accepted : 2019.12.05
  • Published : 2019.12.30

Abstract

In this study, the graded thermal properties of composites are obtained by difference in specific gravity of fillers including Cu, h-BN and GO powders in epoxy. Relatively heavy powders such as Cu and h-BN compared to GO mostly at the bottom layer, while light GO powders were dispersed in the top layer in the composites. The thermal conductivity of composites was gradually increased from 0.55 (0.52) W/mK to 2.82 (1.37) W/mK for GO/h-BN (GO/Cu) epoxy composites from surface to bottom. On the contrary, the coefficient of thermal expansion was decreased from 51 ppm/℃ to 23 ppm/℃ and from 57 ppm/℃ to 32 ppm/℃ for GO/Cu and GO/h-BN, respectively. The variation of thermal properties in composites is attributed due to intrinsic material properties of filler including thermal conductivity, morphology and the distribution by the specific weight of fillers. This simple strategy for realizing graded thermal composites by introducing different filler materials would be effective heat transfer at interface of heterostructure with large thermal properties such as inorganic semiconductor/plastic, metal/plastic, and semiconductor/metal.

본 연구는 에폭시 내 Cu, h-BN 및 GO 분말을 포함한 이종의 필러를 활용하여 점진적인 열적 특성을 구현하였다. 단일 복합체 내에서 상대적으로 무거운 Cu 및 h-BN 분말은 하부 층에 주로 존재하는 반면, 가벼운 GO 분말은 복합체의 상부층에 분산되었다. 이종 필러를 함유한 GO/h-BN (GO/Cu) 에폭시 복합체의 열전도도는 0.55(0.52) W/m·K에서 2.82(1.37) W/m·K로 점진적으로 증가했다. 반대로 열팽창 계수는 GO/Cu와 GO/h-BN 에폭시 복합체 내에서 51 ppm/℃에서 23 ppm/℃으로, 57 ppm/℃에서 32 ppm/℃으로 각각 감소되었다. 이러한 복합체 내의 열적 특성의 변화는 열전도도, 형태 및 필러의 비중에 따른 분포를 포함하여 필러의 고유한 물성에 의해 발생한다. 서로 다른 물성을 가진 필러 물질을 동일한 매트릭스 내에 도입을 통한 점진적 열적 특성의 구현은 반도체/플라스틱, 금속/플라스틱, 반도체/금속 등의 이종 구조로 이루어진 계면에서 효과적인 열전달을 위한 계면소재로서 유용할 것이다.

Keywords

References

  1. A. L. Moore, and L. Shi, "Emerging Challenges and Materials for Thermal Management of Electronics", Mater Today., 17(4), 163 (2014). https://doi.org/10.1016/j.mattod.2014.04.003
  2. S. S. Anandan, and V. Ramalingam, "Thermal Management of Electronics: A Review of Literature", Therm. Sci., 12, 5 (2008).
  3. C. Zweben, "Advances in Composite Materials for Thermal Management in Electronic Packaging", JOM., 50(6), 47 (1998). https://doi.org/10.1007/s11837-998-0128-6
  4. L. C. Davis, and B. E. Artz, "Thermal-Conductivity of Metal-Matrix Composites", J. Appl. Phys., 77(10), 4954 (1995). https://doi.org/10.1063/1.359302
  5. H. Y. Jung, K. S. Moon, K. S. Choi, K. S. Suh, and H. G. Yoon, "Effect of High Filler Loading on The Reliability of Epoxy Molding Compound for Microelectronic Packaging", J. Microelectron. Packag. Soc., 6(3), 51 (1999).
  6. X. Lu, and G. Xu, "Thermally Conductive Polymer Composites for Electronic Packaging", J. Appl. Polym. Sci., 65(13), 2733 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970926)65:13<2733::AID-APP15>3.0.CO;2-Y
  7. W. Kim, Y. W. Hong, J. W. Bae, Y. H. Hwang, and B. U. Kim, "The Study on the Properties of Binary Mixture(crystalline silica/AlN) Filled Epoxy Molding Compounds", J. Microelectron. Packag. Soc., 6(3), 41 (1999).
  8. P. K. Schelling, L. Shi, and K. E. Goodson, "Managing Heat for Electronics", Mater Today., 8(6), 30 (2005).
  9. A. L. Moore, and L. Shi, "Emerging Challenges and Materials for Thermal Management of Electronics", Mater Today., 17(4), 163 (2014). https://doi.org/10.1016/j.mattod.2014.04.003
  10. A. A. Balandin, "Thermal Properties of Graphene and Nanostructured Carbon Materials", Nat. Mater., 10, 569 (2011). https://doi.org/10.1038/nmat3064
  11. I. Jo, M. T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao, and L. Shi, "Thermal Conductivity and Phonon Transport in Suspended Few-Layer Hexagonal Boron Nitride", Nano Lett., 13(2), 550 (2013). https://doi.org/10.1021/nl304060g
  12. M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, "Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy", Nano Lett., 10(3), 751 (2010). https://doi.org/10.1021/nl904286r
  13. R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, "Hunting for Monolayer Boron Nitride: Optical and Raman Signatures", Small., 7(4), 465 (2011). https://doi.org/10.1002/smll.201001628