DOI QR코드

DOI QR Code

Effect of Sn Decorated MWCNT Particle on Microstructures and Bonding Strengths of the OSP Surface Finished FR-4 Components Assembled with Sn58%Bi Composite Solder Joints

OSP 표면처리된 FR-4 PCB기판과 Sn58%Bi 복합솔더 접합부의 미세조직 및 접합강도에 미치는 Sn-MWCNT의 영향

  • Park, Hyun-Joon (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Lee, Choong-Jae (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Min, Kyung Deuk (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Jung, Seung-Boo (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
  • 박현준 (성균관대학교 신소재공학과) ;
  • 이충재 (성균관대학교 신소재공학과) ;
  • 민경득 (성균관대학교 신소재공학과) ;
  • 정승부 (성균관대학교 신소재공학과)
  • Received : 2019.12.12
  • Accepted : 2019.12.29
  • Published : 2019.12.30

Abstract

Sn-Pb solder alloys in electronics rapidly has been replaced to Pb free solder alloys because of various environmental regulations such as restriction of hazardous substances directive (RoHS), European Union waste electrical, waste electrical and electronic equipment (WEEE), registration evaluation authorization and of chemicals (REACH) etc. Because Sn58%Bi (in wt.%) solder alloy has low melting point and higher mechanical properties than that of Sn-Pb solder, it has been studied to manufacture electronic components. However, the reliability of Sn58%Bi solder could be lowered because of the brittleness of Bi element included in the solder alloy. Therefore, we observed the microstructures of Sn58%Bi composite solders with various contents of Sn-decorated multiwalled carbon nanotube (Sn-MWCNT) particles and evaluated bonding strength of the FR-4 components assembled with Sn58%Bi composite solder. Also, microstructures and bonding strengths of the Sn58%Bi composite solder joints were evaluated with the number of reflows from 1 to 7 times, respectively. Bonding strengths and fracture energies of the Sn58%Bi composite solder joints were measured by die shear test. Microstructures and fracture modes were observed with scanning electron microscope (SEM). Microstructures in the Sn58%Bi composite solder joints were finer than that of only Sn58%Bi solder joint. Bonding strength and fracture energy of Sn58%Bi composite solder including 0.1 wt.% of Sn-decorated MWCNT particles increased up to 20.4% and 15.4% at 5 times in reflow, respectively.

전자제품에서 사용되던 Sn-Pb계 솔더합금은 RoHS, WEEE, REACH 등의 환경규제에 의해 무연솔더합금(Pb free solder alloy)으로 빠르게 대체되고 있다. 그 중에서도 Sn58%Bi(in wt.%) 합금은 융점이 낮고 Sn-Pb계 합금에 비해 기계적특성이 우수하여, 전자제품 솔더합금으로 사용하기 위한 연구가 진행되고 있다. 그러나 Sn58%Bi 솔더합금은 구성 원소인 Bi의 취성으로 인해 기계적인 신뢰성이 저하되는 문제를 개선할 필요가 있다. 따라서 본 연구에서는 다양한 함량의 Sn-MWCNT (multiwalled carbon nanotube) 입자를 첨가한 Sn58%Bi 복합솔더를 제조한 후, OSP처리된 FR-4 기판 및 FR-4 컴포넌트를 리플로우(reflow) 횟수를 1회부터 7회까지 진행하였다. 접합시편의 접합강도 및 파괴에너지는 전단시험(die shear test)을 통해 측정하였고, 주사전자현미경(scanning electron microscope, SEM)으로 미세조직 및 파괴모드를 분석하였다. Sn-MWCNT 첨가에 의해 Sn58%Bi 복합솔더 접합부에서 조직 미세화가 관찰되었고, 함량이 0.1 wt.%일때 접합강도와 파괴에너지는 각각 20.4%, 15.4% 만큼 증가하였다. 또한 파단면에서 연성파괴(ductile failure) 영역이 관찰되었으며, F-x(force-displacement to failure) 그래프를 통해 Sn-MWCNT의 첨가가 복합솔더의 연성(ductility)을 증가시킨 것을 확인할 수 있었다.

Keywords

References

  1. J.-H. Back, B.-S. Lee, S. Yoo, D.-G. Han, S.-B Jung, and J.- W Yoon, "Solderability of Thin ENEPIG Plating Layer for Fine Pitch Package application", J. Microelectron. Packag. Soc., 24(1), 83 (2017). https://doi.org/10.6117/kmeps.2017.24.1.083
  2. J. Kim, W.-R. Myung, and S.-B. Jung, "Effect of Aging treatment and Epoxy on Bonding Strength of Sn-58Bi Solder and OSP-finished PCB", J. Microelectron. Packag. Soc., 21(4), 1 (2014). https://doi.org/10.6117/kmeps.2014.21.4.001
  3. K.-N. Tu and K. Zeng, "Tin-lead (SnPb) Solder Reaction in Flip Chip Technology", Materials Science and Engineering: R: Reports, 34(1), 1 (2001). https://doi.org/10.1016/S0927-796X(01)00029-8
  4. C. Wu, D. Yu, C. Law, and L. Wang, "Properties of Lead-free Solder Alloys with Rare Earth Element Additions", Materials Science and Engineering: R: Reports, 44(1), 1 (2004). https://doi.org/10.1016/j.mser.2004.01.001
  5. R. A. Islam, Y. Chan, W. Jillek, and S. Islam, "Comparative Study of Wetting Behavior and Mechanical Properties (microhardness) of Sn-Zn and Sn-Pb Solders", Microelectronics Journal, 37(8), 705 (2006). https://doi.org/10.1016/j.mejo.2005.12.010
  6. W. R. Osorio, L. C. Peixoto, L. R. Garcia, N. Mangelinck-Noel, and A. Garcia, "Microstructure and Mechanical Properties of Sn-Bi, Sn-Ag and Sn-Zn Lead-free Solder Alloys", Journal of Alloys and Compounds, 572, 97 (2013). https://doi.org/10.1016/j.jallcom.2013.03.234
  7. J.-W. Yoon and S.-B. Jung, "Effect of Surface Finish on Interfacial Reactions of Cu/Sn-Ag-Cu/Cu (ENIG) Sandwich Solder Joints", Journal of alloys and compounds, 448(1-2), 177 (2008). https://doi.org/10.1016/j.jallcom.2006.10.052
  8. W. Tomlinson and I. Collier, "The Mechanical Properties and Microstructures of Copper and Brass Joints Soldered with Eutectic Tin-bismuth Solder", Journal of Materials Science, 22(5), 1835 (1987). https://doi.org/10.1007/BF01132413
  9. L. Shen, Z. Y. Tan, and Z. Chen, "Nanoindentation Study on the Creep Resistance of SnBi Solder Alloy with Reactive Nano-metallic Fillers", Materials Science and Engineering: A, 561, 232 (2013). https://doi.org/10.1016/j.msea.2012.10.076
  10. D. Lin, G. Wang, T. Srivatsan, M. Al-Hajri, and M. Petraroli, "Influence of Titanium Dioxide Nanopowder Addition on Microstructural Development and Hardness of Tin-lead Solder", Materials Letters, 57(21), 3193 (2003). https://doi.org/10.1016/S0167-577X(03)00023-5
  11. T. Hu, Y. Li, Y.-C. Chan, and F. Wu, "Effect of Nano $Al_2O_3$ Particles Doping on Electromigration and Mechanical Properties of Sn-58Bi Solder Joints", Microelectronics Reliability, 55(8), 1226 (2015). https://doi.org/10.1016/j.microrel.2015.05.008
  12. L. Zhang, W. Tao, J. Liu, Y. Zhang, Z. Cheng, C. Andersson, Y. Gao, and Q. Zhai, "Manufacture, Microstructure and Microhardness Analysis of Sn-Bi Lead-free Solder Reinforced with Sn-Ag-Cu Nano-particles", Proc. International Conference on Electronic Packaging Technology & High Density Packaging, Shanghai, China, 1, IEEE (2008).
  13. S. Demoustier, E. Minoux, M. Le Baillif, M. Charles, and A. Ziaei, "Review of Two Microwave Applications of Carbon Nanotubes: Nano-antennas and Nano-switches", Comptes Rendus Physique, 9(1), 53 (2008). https://doi.org/10.1016/j.crhy.2008.01.001
  14. L. Yang, H. Liu, Y. Zhang, and H. Yu, "Study on the Reliability of Carbon Nanotube-reinforced Sn-58Bi Lead-free Solder Joints", Journal of Materials Engineering and Performance, 26(12), 6028 (2017). https://doi.org/10.1007/s11665-017-3033-8
  15. S. Iijima, "Synthesis of Carbon Nanotubes", Nature, 354 (6348), 56 (1991). https://doi.org/10.1038/354056a0
  16. S. Nai, J. Wei, and M. Gupta, "Lead-free Solder Reinforced with Multiwalled Carbon Nanotubes", Journal of electronic materials, 35(7), 1518 (2006). https://doi.org/10.1007/s11664-006-0142-9
  17. H. Peng, X.-c. LU, T.-S. Lin, H.-X. Li, A. Jing, M. Xin, J.-C. Feng, Y. Zhang, L. Qi, and Y.-Y. Qian, "Improvement of Mechanical Properties of Sn-58Bi Alloy with Multi-walled Carbon Nanotubes", Transactions of Nonferrous Metals Society of China, 22, s692 (2012). https://doi.org/10.1016/S1003-6326(12)61788-9
  18. H. Sun, Y. Chan, and F. Wu, "The Impact of Reflow Soldering Induced Dopant Redistribution on the Mechanical Properties of CNTs Doped Sn58Bi Solder Joints", Journal of Materials Science: Materials in Electronics, 26(7), 5318 (2015). https://doi.org/10.1007/s10854-015-3071-7
  19. H. Sun, X. Hu, Y. Chan, and F. Wu, "Effect of Nickel-coating Modified CNTs on the Dopant Dispersion and Performance of BGA Solder Joints", Proc. 67th Electronic Components and Technology Conference (ECTC), 1981, IEEE (2017).
  20. S. Chantaramanee, S. Wisutmethangoon, L. Sikong, and T. Plookphol, "Development of a Lead-free Composite Solder from Sn-Ag-Cu and Ag-coated Carbon Nanotubes", Journal of Materials Science: Materials in Electronics, 24(10), 3707 (2013). https://doi.org/10.1007/s10854-013-1307-y
  21. C.-J. Lee, K. D. Min, B.-U. Hwang, J.-H. Kim, and S.-B. Jung, "The Effect of pH on Synthesizing Ni-decorated MWCNTs and its Application for Sn-58Bi Solder", Current Applied Physics, 19(11), 1182 (2019). https://doi.org/10.1016/j.cap.2019.07.015
  22. C.-J. Lee, K. D. Min, H. J. Park, J.-H. Kim, and S.-B. Jung, "Effect of Sn-Decorated MWCNTs on the Mechanical Reliability of Sn-58Bi Solder", Electronic Materials Letters, 15(6), 693 (2019). https://doi.org/10.1007/s13391-019-00176-1
  23. C.-J. Lee, H. Jeong, K.-H. Jung, K. D. Min, and S.-B. Jung, "Thermal and Mechanical Property of FCLED Package Component Interconnected with Sn-MWCNT Composite Solder", Journal of Materials Science: Materials in Electronics, 30, 12869 (2019). https://doi.org/10.1007/s10854-019-01648-8
  24. H. Ohtani and K. Ishida, "A Thermodynamic Study of the Phase Equilibria in the Bi-Sn-Sb System", Journal of Electronic Materials, 23(8), 747 (1994). https://doi.org/10.1007/BF02651369
  25. C. Zhang, S.-d. Liu, G.-t. Qian, Z. Jian, and X. Feng, "Effect of Sb Content on Properties of Sn-Bi solders", Transactions of Nonferrous Metals Society of China, 24(1), 184 (2014). https://doi.org/10.1016/S1003-6326(14)63046-6
  26. F. Wang, L. Zhou, Z. Zhang, J. Wang, X. Wang, and M. Wu, "Effect of Sn-Ag-Cu on the Improvement of Electromigration Behavior in Sn-58Bi Solder Joint", Journal of Electronic Materials, 46(10), 6204 (2017). https://doi.org/10.1007/s11664-017-5655-x
  27. P. Liu, P. Yao, and J. Liu, "Effects of Multiple Reflows on Interfacial Reaction and Shear Strength of SnAgCu and SnPb Solder Joints with Different PCB Surface Finishes", Journal of Alloys and Compounds, 470(1-2), 188 (2009). https://doi.org/10.1016/j.jallcom.2008.02.102
  28. K. M. Kumar, V. Kripesh, and A. A. Tay, "Influence of Single- wall Carbon Nanotube Addition on the Microstructural and Tensile Properties of Sn-Pb Solder Alloy", Journal of Alloys and Compounds, 455(1-2), 148 (2008). https://doi.org/10.1016/j.jallcom.2007.01.045
  29. L. Zhang and K.-N. Tu, "Structure and Properties of lead-free Solders Bearing Micro and Nano particles", Materials Science and Engineering: R: Reports, 82, 1 (2014). https://doi.org/10.1016/j.mser.2014.06.001
  30. H.-J. Park, C.-J. Lee, K. D. Min, and S.-B. Jung, "Microstructures and Mechanical Properties of the Sn58wt.% Bi Composite Solders with Sn Decorated MWCNT Particles", Journal of Electronic Materials, 48(3), 1746 (2019). https://doi.org/10.1007/s11664-018-06882-0