DOI QR코드

DOI QR Code

Prediction of Short and Long-term PV Power Generation in Specific Regions using Actual Converter Output Data

실제 컨버터 출력 데이터를 이용한 특정 지역 태양광 장단기 발전 예측

  • Ha, Eun-gyu (Department of Energy IT, Gachon University) ;
  • Kim, Tae-oh (Department of IT Convergence Engineering, Gachon University) ;
  • Kim, Chang-bok (Department of Energy IT, Gachon University)
  • 하은규 (가천대학교 에너지 IT학과) ;
  • 김태오 (가천대학교 IT융합공학과) ;
  • 김창복 (가천대학교 에너지 IT학과)
  • Received : 2019.11.28
  • Accepted : 2019.12.21
  • Published : 2019.12.30

Abstract

Solar photovoltaic can provide electrical energy with only radiation, and its use is expanding rapidly as a new energy source. This study predicts the short and long-term PV power generation using actual converter output data of photovoltaic system. The prediction algorithm uses multiple linear regression, support vector machine (SVM), and deep learning such as deep neural network (DNN) and long short-term memory (LSTM). In addition, three models are used according to the input and output structure of the weather element. Long-term forecasts are made monthly, seasonally and annually, and short-term forecasts are made for 7 days. As a result, the deep learning network is better in prediction accuracy than multiple linear regression and SVM. In addition, LSTM, which is a better model for time series prediction than DNN, is somewhat superior in terms of prediction accuracy. The experiment results according to the input and output structure appear Model 2 has less error than Model 1, and Model 3 has less error than Model 2.

태양광 발전은 일사량만 있으면 전기에너지를 얻을 수 있기 때문에, 새로운 에너지 공급원으로 용도가 급증하고 있다. 본 논문은 실제 태양광 발전 시스템의 컨버터 출력을 이용하여 장단기 출력 예측을 하였다. 예측 알고리즘은 다중선형회귀와 머신러닝의 지도학습 중 분류모델인 서포트 벡터 머신 그리고 DNN과 LSTM 등 딥러닝을 이용하였다. 또한 기상요소의 입출력 구조에 따라 3개의 모델을 이용하였다. 장기 예측은 월별, 계절별, 연도별 예측을 하였으며, 단기 예측은 7일간의 예측을 하였다. 결과로서 RMSE 측도에 의한 예측 오차로 비교해 본 결과 다중선형회귀와 SVM 보다는 딥러닝 네트워크가 예측 정확도 측면에서 더 우수하였다. 또한, DNN 보다 시계열 예측에 우수한 모델인 LSTM이 예측 정확도 측면에서 우수하였다. 입출력 구조에 따른 실험 결과는 모델 1보다 모델 2가 오차가 적었으며, 모델 2보다는 모델 3이 오차가 적었다.

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP)

References

  1. M. A. Islam, M. Hasanuzzaman, N. A. Rahim, A. Nahar, and M. Hosenuzzaman, "Global renewable energy-based electricity generation and smart grid system for energy security," The Scientific World Journal, Vol. 2014, pp. 1-13, Aug. 2014.
  2. H. Yang, C. Huang, Y. Huang, and Y. Pai, "A weather-based hybrid method for 1-day ahead hourly forecasting of PV power output," IEEE Transactions on Sustainable Energy, Vol. 5, No. 3, pp. 917-926, Apr. 2014. https://doi.org/10.1109/TSTE.2014.2313600
  3. M. Lei, L. Shiyan, J. Chuanwen, L. Hongling, and Z. Yan, "A review on the forecasting of wind speed and generated power," Renewable and Sustainable Energy Reviews, Vol. 13, No. 4, pp. 915-920, May. 2009. https://doi.org/10.1016/j.rser.2008.02.002
  4. A. Costa, A. Crespo, J. Navarro, G. Lizcano, H. Madsen, and E. Feitosa, "A review on the young history of the wind power short-term prediction," Renewable and Sustainable Energy Reviews, Vol. 12, No. 6, pp. 1725-1744, Aug. 2008. https://doi.org/10.1016/j.rser.2007.01.015
  5. S. Mirasgedis, Y. Sarafidis, E. Georgopoulou, D. Lalas, M. Moschovits, F. Karagiannis, and D. Papakonstantinou, "Models for mid-term electricity demand forecasting incorporating weather influences," Energy, Vol. 31, No. 2-3, pp. 208-227, Feb. 2006. https://doi.org/10.1016/j.energy.2005.02.016
  6. T. Hong, J. Wilson, and J. Xie, "Long term probabilistic load forecasting and normalization with hourly information," IEEE Transactions on Smart Grid, Vol. 5, No. 1, pp. 456-462, Jan. 2014. https://doi.org/10.1109/TSG.2013.2274373
  7. A. J. Conejo, M. A. Plazas, R. Espinola, S. Member, and A. B. Molina, "Day-ahead Electricity Price Forecasting Using the Wavelet Transform and ARIMA Models," IEEE Transactions On Power Systems, Vol. 20, No. 2, pp. 1035-1042, May. 2005.
  8. D. J. Lee, J. P. Lee, C. S. Lee, J. Y. Lim, and P. S. Ji, "Development of PV power prediction algorithm using adaptive neuro-fuzzy model," The Transactions of the Korean Institute of Electrical Engineers, Vol. 64, No. 4, pp. 246-250, Dec. 2015. https://doi.org/10.5370/KIEEP.2015.64.4.246
  9. C. S. Lee and P. S. Ji, " Development of daily PV power forecasting models using ELM," The transactions of the Korean Institute of Electrical Engineers, Vol. 64P, No. 3, pp. 164-168, Sep. 2015.
  10. S. M. Lee and W. J. Lee, "Development of a system for predicting photovoltaic power generation and detecting using machine learning," KIPS Transactions on Computer and Communication Systems, Vol. 5, No. 10, pp. 353-360, Oct. 2016. https://doi.org/10.3745/KTCCS.2016.5.10.353
  11. A. Yona, T. Senjyu, T. Funabashi, P. Mandal, and C. H. Kim, "Decision technique of solar radiation prediction applying recurrent neural network for short-term ahead power output of photovoltaic system," Smart Grid and Renewable Energy, Vol. 4, No. 6A, pp.32-38, Sep. 2013. https://doi.org/10.4236/sgre.2013.46A004
  12. K. H. Lee and W. J. Kim, "Forecasting of 24_hours Ahead Photovoltaic Power Output Using Support Vector Regression," The Journal of Korean Institute of Information Technology, Vol. 14, No. 3, pp. 175-183, May. 2016.
  13. [Internet]. Available: http://colah.github.io/posts/2015-08-Understanding-LSTMs [Accessed: Nov.03.2019]