DOI QR코드

DOI QR Code

Interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP laminate plate: Analytical and numerical study

  • 투고 : 2019.07.18
  • 심사 : 2019.12.13
  • 발행 : 2019.09.25

초록

In this study, the interfacial stresses in RC beams strengthened by externally bonded prestressed GFRP laminate are evaluated using an analytical approach, based on the equilibrium equations and boundary conditions. A comparison of the interfacial stresses obtained from the present analytical model and other existing models is undertaken. Otherwise, a parametric study is conducted to investigate the effects of geometrical and material properties on the variation of interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP laminate. The results obtained indicate that the damage degree has little effect on the maximum shear stress, with a variation less than 5% between the damaged and undamaged RC beams. However, the results also reveal that the prestressing level has a significant effect on the interfacial stresses; hence the damaged RC beam strengthened with an initial prestressing force of 100 kN gives 110% higher maximum shear stress than the damaged RC beam strengthened with an initial prestressing force of 50 kN. The values of shear stress obtained by the analytical approach are approximately equal to 44% of those obtained from the numerical solution, while the interfacial normal stresses predicted by the numerical study are approximately 26% higher than those calculated by the analytical solution.

키워드

참고문헌

  1. ABAQUS (2007), User's Manual, Version 6.7.0, Hibbitt, Karlsson & Sorensen, Inc. Pawtucket, RI, USA.
  2. Abderezak, R., Daouadji, T.H., Abbes, B., Rabia, B., Belkacem, A. and Abbes, F. (2017), "Elastic analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage", Adv. Mater. Res., Int. J., 6(3), 257-278. https://doi.org/10.12989/amr.2017.6.3.257
  3. Abderezak, R., Rabia, B., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2018a), "Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams", Adv. Mater. Res., Int. J., 7(2), 83-103. https://doi.org/10.12989/amr.2018.7.2.083
  4. Abderezak, R., Daouadji, T.H., Rabia, B. and Belkacem, A. (2018b), "Nonlinear analysis of damaged RC beams strengthened with glass fiber reinforced polymer plate under symmetric loads", Earthq. Struct., Int. J., 15(2), 113-122. https://doi.org/10.12989/eas.2018.15.2.113
  5. Al-Mahaidi, R. and Kalfat, R. (2011), "Investigation into CFRP laminate anchorage systems utilising bidirectional fabric wrap", Compos. Struct., 93(4), 1265-1274. https://doi.org/10.1016/j.compstruct.2010.10.012
  6. Aslam, M., Shafigh, P., Jumaat, M.Z. and Shah, S.N.R. (2015), "Strengthening of RC beams using prestressed fiber reinforced polymers - A review", Constr. Build. Mater., 82, 235-256. https://doi.org/10.1016/j.conbuildmat.2015.02.051
  7. Attari, N., Amziane, S. and Chemrouk, M. (2012), "Flexural strengthening of concrete beams using CFRP, GFRP and hybrid FRP sheets", Constr. Build. Mater., 37, 746-757. https://doi.org/10.1016/j.conbuildmat.2012.07.052
  8. Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., Int. J., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761
  9. Benhenni, M.A., Daouadji, T.H., Abbes, B., Adim, B., Li, Y. and Abbes, F. (2018), "Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates", Adv. Mater. Res., Int. J., 7(2), 119-136. https://doi.org/10.12989/amr.2018.7.2.119
  10. Benhenni, M.A., Adim, B., Daouadji, T.H., Abbes, B., Abbes, F., Li, Y. and Bouzidane, A. (2019a), "A comparison of closed form and finite element solutions for the free vibration of hybrid cross ply laminated plates", Mech. Compos. Mater., 55(2), 181. https://doi.org/10.1007/s11029-019-09803-2
  11. Benhenni, M.A., Daouadji, T.H., Abbes, B., Abbes, F., Li, Y. and Adim, B. (2019b), "Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions", Struct. Eng. Mech., Int. J., 70(5), 535-549. https://doi.org/10.12989/sem.2019.70.5.535
  12. Bensattalah, T., Zidour, M. and Daouadji, T.H. (2018), "Analytical analysis for the forced vibration of CNT surrounding elastic medium including thermal effect using nonlocal Euler-Bernoulli theory", Adv. Mater. Res., Int. J., 7(3), 163-174. https://doi.org/10.12989/amr.2018.7.3.163
  13. Bensattalah, T., Zidour, M. and Daouadji, T.H. (2019), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., Int. J., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021
  14. Bouakaz, K., Daouadji, T.H., Meftah, S.A., Ameur, M., Tounsi, A. and Bedia, E.A. (2014), "A Numerical analysis of steel beams strengthened with composite materials", Mech. Compos. Mater., 50(4), 685-696. https://doi.org/10.1007/s11029-014-9435-x
  15. Chedad, A., Daouadji, T.H., Abderezak, R., Belkacem, A., Abbes, B., Rabia, B. and Abbes, F. (2018), "A high-order closed-form solution for interfacial stresses in externally sandwich FGM plated RC beams", Adv. Mater. Res., Int. J., 6(4), 317-328. https://doi.org/10.12989/amr.2017.6.4.317
  16. Daouadji, T.H. (2013), "Analytical analysis of the interfacial stress in damaged reinforced concrete beams strengthened by bonded composite plates", Strength Mater., 45(5), 587-597. https://doi.org/10.1007/s11223-013-9496-4
  17. Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Computat. Des., Int. J., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057
  18. Daouadji, T.H. and Tounsi, A. (2012), "Analyse des contraintes d'interface dans les poutres en beton arme renforcees par collage des stratifiees composites", Revue de genie industriel $N^{\circ}$ 8, 3-12.
  19. Daouadji, T.H., Benferhat, R. and Adim, B. (2016), "Bending analysis of an imperfect advanced composite plates resting on the elastic foundations", Coupl. Syst. Mech., Int. J., 5(3), 269-285. https://doi.org/10.12989/csm.2016.5.3.269
  20. Hadj, B., Rabia, B. and Daouadji, T.H. (2019), "Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations", Struct. Eng. Mech., Int. J., 72(1), 823-832. https://doi.org/10.12989/sem.2019.72.1.061
  21. Hassaine Daouadji, T., Benyoucef, S., Tounsi, A., Benrahou, K.H. and Adda Bedia, E.A. (2008), "Interfacial stress concentrations in FRP-damaged RC hybrid beams", Compos. Interf., 15(4), 425-440. https://doi.org/10.1163/156855408784514702
  22. Hassaine Daouadji, T., Rabahi, A., Abbes, B. and Adim, B. (2016), "Theoretical and finite element studies of interfacial stresses in reinforced concrete beams strengthened by externally FRP laminates plate", J. Adhes. Sci. Technol., 30(12), 1253-1280. https://doi.org/10.1080/01694243.2016.1140703
  23. Hoque, N. and Jumaat, M.Z. (2018), "Debonding failure analysis of prestressed FRP strengthened RC beams", Struct. Eng. Mech., Int. J., 66(4), 543-555. https://doi.org/10.12989/sem.2018.66.4.543
  24. Li, J., Wang, Y., Deng, J. and Jia, Y. (2018), "Experimental study on the flexural behaviour of notched steel beams strengthened by prestressed CFRP plate with an end plate anchorage system", Eng. Struct., 171, 29-39. https://doi.org/10.1016/j.engstruct.2018.05.042
  25. Maalej, M. and Leong, K.S. (2005), "Effect of beam size and FRP thickness on interfacial shear stress concentration and failure mode of FRP-strengthened beams", Compos. Sci. Technol., 65(7), 1148-1158. https://doi.org/10.1016/j.compscitech.2004.11.010
  26. Mazars, J. and Pijaudier-Cabot, G. (1996), "From damage to fracture mechanics and conversely: A combined approach", Int. J. Solids Struct., 33(20), 3327-3342. https://doi.org/10.1016/0020-7683(96)00015-7
  27. Meier, U. (1995), "Strengthening of structures using carbon fibre/epoxy composites", Constr. Build. Mater., 9(6), 341-351. https://doi.org/10.1016/0950-0618(95)00071-2
  28. Meier, U. (2000), "Composite materials in bridge repair", Applied Composite Materials, 7(2), 75-94. https://doi.org/10.1023/A:1008919824535
  29. Mostofinejad, D. and Shameli, S.M. (2013), "Externally bonded reinforcement in grooves (EBRIG) technique to postpone debonding of FRP sheets in strengthened concrete beams", Constr. Build. Mater., 38, 751-758. https://doi.org/10.1016/j.conbuildmat.2012.09.030
  30. Oudah, F. and El-Hacha, R. (2013), "Analytical fatigue prediction model of RC beams strengthened in flexure using prestressed FRP reinforcement", Eng. Struct., 46, 173-183. https://doi.org/10.1016/j.engstruct.2012.07.020
  31. Rabia, B., Abderezak, R., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2018), "Analytical analysis of the interfacial shear stress in RC beams strengthened with prestressed exponentially-varying properties plate", Adv. Mater. Res., Int. J., 7(1), 29-44. https://doi.org/10.12989/amr.2018.7.1.029
  32. Rabia, B., Daouadji, T.H. and Abderezak, R. (2019a), "Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate", Struct. Eng. Mech., Int. J., 72(3), 293-304. https://doi.org/10.12989/sem.2019.72.3.293
  33. Rabia, B., Daouadji, T.H. and Abderezak, R. (2019b), "Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate", Earthq. Struct., Int. J., 16(5), 601-609. https://doi.org/10.12989/eas.2019.16.5.601
  34. Raithby, K.D. (1982), "Strengthening of concrete bridge decks with epoxy-bonded steel plates", Int. J. Adhes. Adhes., 2(2), 115-118. https://doi.org/10.1016/0143-7496(82)90124-5
  35. Roberts, T.M. (1989), "Approximate analysis of shear and normal stress concentrations in the adhesive layer of plated RC beams", Struct. Engineer, 67(12), 229-233.
  36. Saribiyik, A. and Caglar, N. (2016), "Flexural strengthening of RC beams with low-strength concrete using GFRP and CFRP", Struct. Eng. Mech., Int. J., 58(5), 825-845. https://doi.org/10.12989/sem.2016.58.5.825
  37. Shen, H.-S., Chen, Y. and Su, W.-L. (2004), "Bending and vibration characteristics of damaged RC slabs strengthened with externally bonded CFRP sheets", Compos. Struct., 63(2), 231-242. https://doi.org/10.1016/S0263-8223(03)00170-3
  38. Smith, S.T. and Teng, J.G. (2001), "Interfacial stresses in plated beams", Eng. Struct., 23(7), 857-871. https://doi.org/10.1016/S0141-0296(00)00090-0
  39. Tahar, H.D., Boussad, A., Abderezak, R., Rabia, B., Fazilay, A. and Belkacem, A. (2019), "Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study", Struct. Eng. Mech., Int. J., 72(4), 409-419. https://doi.org/10.12989/sem.2019.72.4.409
  40. Teng, J.G., Zhang, J.W. and Smith, S.T. (2002), "Interfacial stresses in reinforced concrete beams bonded with a soffit plate: a finite element study", Constr. Build. Mater., 16(1), 1-14. https://doi.org/10.1016/S0950-0618(01)00029-0
  41. Tounsi, A. and Amara, K. (2005), "Stiffness degradation in hygrothermal aged cross-ply laminate with transverse cracks", AIAA Journal, 43(8), 1836-1843. https://doi.org/10.2514/1.3925
  42. Tounsi, A., Hassaine Daouadji, T., Benyoucef, S. and Adda Bedia, E.A. (2009), "Interfacial stresses in FRPplated RC beams: Effect of adherend shear deformations", Int. J. Adhes. Adhes., 29(4), 343-351. https://doi.org/10.1016/j.ijadhadh.2008.06.008
  43. Toutanji, H., Ueno, S. and Vuddandam, R. (2013), "Prediction of the interfacial shear stress of externally bonded FRP to concrete substrate using critical stress state criterion", Compos. Struct., 95, 375-380. https://doi.org/10.1016/j.compstruct.2012.08.040
  44. Wantanasiri, P. and Lenwari, A. (2015), "Intermediate crack-induced debonding analysis for RC beams strengthened with FRP plates", Struct. Eng. Mech., Int. J., 56(3), 473-490. https://doi.org/10.12989/sem.2015.56.3.473
  45. Wu, Q., Xiao, S. and Iwashita, K. (2018), "Experimental study on the interfacial shear stress of RC beams strengthened with prestressed BFRP rod", Results Phys., 10, 427-433. https://doi.org/10.1016/j.rinp.2018.06.007
  46. Zhou, A., Qin, R., Feo, L., Penna, R. and Lau, D. (2017), "Investigation on interfacial defect criticality of FRP-bonded concrete beams", Compos. Part B: Eng., 113, 80-90. https://doi.org/10.1016/j.compositesb.2016.12.055

피인용 문헌

  1. Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis vol.9, pp.4, 2019, https://doi.org/10.12989/amr.2020.9.4.265
  2. Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.575
  3. Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2019, https://doi.org/10.12989/sem.2021.77.2.217
  4. Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity vol.10, pp.1, 2019, https://doi.org/10.12989/csm.2021.10.1.061
  5. Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations vol.77, pp.6, 2019, https://doi.org/10.12989/sem.2021.77.6.797
  6. Modeling and analysis of the imperfect FGM-damaged RC hybrid beams vol.6, pp.2, 2019, https://doi.org/10.12989/acd.2021.6.2.117
  7. New solution for damaged porous RC cantilever beams strengthening by composite plate vol.10, pp.3, 2019, https://doi.org/10.12989/amr.2021.10.3.169