DOI QR코드

DOI QR Code

Evaluation of GPM satellite and S-band radar rain data for flood simulation using conditional merging method and KIMSTORM2 distributed model

조건부합성 기법과 KIMSTORM2 분포형 수문모형을 이용한 GPM 위성 강우자료 및 Radar 강우자료의 홍수모의 평가

  • Kim, Se Hoon (Department of Civil, Environmental and Plant Engineering, Konkuk University) ;
  • Jung, Chung Gil (Texas A&M AgriLife Research Center at El Paso) ;
  • Jang, Won Jin (Department of Civil, Environmental and Plant Engineering, Konkuk University) ;
  • Kim, Seong Joon (Department of Civil, Environmental and Plant Engineering, Konkuk University)
  • 김세훈 (건국대학교 공과대학 사회환경플랜트공학과) ;
  • 정충길 ;
  • 장원진 (건국대학교 공과대학 사회환경플랜트공학과) ;
  • 김성준 (건국대학교 대학원 사회환경플랜트공학과)
  • Received : 2018.08.10
  • Accepted : 2018.11.05
  • Published : 2019.01.31

Abstract

This study performed to simulate the watershed storm runoff using data of S-band dual-polarization radar rain, GPM (Global Precipitation Mission) satellite rain, and observed rainfall at 21 ground stations operated by KMA (Korea Meteorological Administration) respectively. For the 3 water level gauge stations (Sancheong, Changchon, and Namgang) of NamgangDam watershed ($2,293km^2$), the KIMSTORM2 (KIneMatic wave STOrm Runoff Model2) was applied and calibrated with parameters of initial soil moisture contents, Manning's roughness of overland and stream to the event of typhoon CHABA (82 mm in watershed aveprage) in $5^{th}$ October 2016. The radar and GPM data was corrected with CM (Conditional Merging) method such as CM-corrected Radar and CM-corrected GPM. The CM has been used for accurate rainfall estimation in water resources and meteorological field and the method combined measured ground rainfall and spatial data such as radar and satellite images by the kriging interpolation technique. For the CM-corrected Radar and CM-corrected GPM data application, the determination coefficient ($R^2$) was 0.96 respectively. The Nash-Sutcliffe efficiency (NSE) was 0.96 and the Volume Conservation Index (VCI) was 1.03 respectively. The CM-corrected data of Radar and GPM showed good results for the CHABA peak runoff and runoff volume simulation and improved all of $R^2$, NSE, and VCI comparing with the original data application. Thus, we need to use and apply the radar and satellite data to monitor the flood within the watershed.

본 연구에서는 비슬산 이중편파 Radar 자료와, GPM 위성자료 및 21개 (Korea Meteorological Administration, KMA) 지상강우자료를 활용하여 분포형 강우-유출 모형(KIneMatic wave STOrm Runoff Model2, KIMSTORM2)을 이용해 남강댐 유역($2,293km^2$)을 대상으로 유출해석을 수행하였다. 모형의 유출 해석은 2016년 10월 5일 02:00~09:00 총 8시간 동안 최대강우강도 33 mm/hr, 유역평균 총 강우량 82 mm이 발생한 태풍 차바(CHABA)를 대상으로 하였으며, Radar 및 GPM 자료와 조건부합성(Conditional Merging, CM) 기법을 적용한 Radar (CM-corrected Radar) 및 GPM (CM-corrected GPM) 자료를 각각 활용하여 결과를 비교하였다. 이 때, 공간 강우자료에 유출 검보정은 남강댐 유역 내 3개의 수위관측 지점(산청, 창촌, 남강댐)을 대상으로 실시하였으며, 모형의 매개변수 초기토양수분함량, 지표와 하천의 Manning 조도계수를 이용하여 검보정하였다. 유출 결과는 결정계수(Determination coefficient, $R^2$), Nash-Sutcliffe의 모형효율계수(NSE) 및 유출용적지수(Volume Conservation Index, VCI)를 산정하였다. 그 결과 CM-corrected Radar, GPM 자료가 평균 $R^2$는 0.96, NSE의 경우 0.96, 유출용적지수(VCI)는 1.03으로 가장 우수한 결과를 나타내었다. 최종적으로 CM 기법을 이용한 보정된 공간분포자료는 기존의 자료에 비해 시공간적으로 정확한 홍수 예측에 사용 될 것으로 판단된다.

Keywords

SJOHCI_2019_v52n1_21_f0001.png 이미지

Fig. 1. Flowchart of this study

SJOHCI_2019_v52n1_21_f0002.png 이미지

Fig. 2. Location of Namgang Dam watershed

SJOHCI_2019_v52n1_21_f0003.png 이미지

Fig. 3. GIS input data for KIMSTORM2 model (Jung et al., 2017)

SJOHCI_2019_v52n1_21_f0004.png 이미지

Fig. 4. The cumulative rainfall graphs and relationship between observed rainfall and Kriging, Radar and GPM rain data

SJOHCI_2019_v52n1_21_f0005.png 이미지

Fig. 5. The cumulative rainfall graphs and relationship between observed rainfall and CM-corrected Radar and CM-corrected GPM rain data

SJOHCI_2019_v52n1_21_f0006.png 이미지

Fig. 6. Comparison of spatial distributions of Radar, GPM, and CM results during the CHABA period (2016.10.05. 02:00~09:00)

SJOHCI_2019_v52n1_21_f0007.png 이미지

Fig. 7. Comparison of observed runoff and predicted hydrograph about Radar, GPM and CM method after model calibration: (a) Sancheong (SC), (b) Changcheon (CC) and (c) Namgang Dam (NR) during the CHABA period (2016.10.05. 02:00∼ 09:00)

Table 1. Selected model parameters for model calibration

SJOHCI_2019_v52n1_21_t0001.png 이미지

Table 2. Summary of model evaluation

SJOHCI_2019_v52n1_21_t0002.png 이미지

Table 3. Summary of model calibration

SJOHCI_2019_v52n1_21_t0003.png 이미지

References

  1. Ahn, S. R., Jang, C. H., Kim, S. H., Han, M. S., Kim, J. H., and Kim, S. J. (2013). "Discussion for the effectiveness of radar data through distributed storm runoff modeling." Journal of the Korea Society of Agricultural Engineers, Vol. 55, No. 6, pp. 19-30. https://doi.org/10.5389/KSAE.2013.55.6.019
  2. Ahn, S. R., Jung, C. G., and Kim, S. J. (2015). "A study on the effectiveness of radar rainfall by comparing with flood inundation record map using KIMSTORM (Grid-based KIneMatic Wave STOrm Runoff Model)." Journal of Korea Water Resources Association, Vol. 48, No. 11, pp. 925-936. https://doi.org/10.3741/JKWRA.2015.48.11.925
  3. Ahn, S. R., Park, H. S., Han, M. S., and Kim, S. J. (2014). "Applicability of Sobaek Radar Rain for Flood Routing of Chungju Dam Watershed." Journal of the Korean Association of Geographic Information Studies, Vol. 17, No. 1, pp. 129-143. https://doi.org/10.11108/kagis.2014.17.1.129
  4. Bae, D. H., Kim, J. H., and Yoon, S. S. (2005). "Hydrologic Utilization of Radar-Derived Rainfall (I) Optimal Radar Rainfall Estimation" Journal of Korea Water Resources Association, Vol. 38, No. 12, pp. 1039-1049. https://doi.org/10.3741/JKWRA.2005.38.12.1039
  5. Baik, J. J., and Choi, M. H. (2015). "Spatio-temporal variability of remotely sensed precipitation data from COMS and TRMM: case study of Korean peninsula in East Asia." Advances in Space Research, Vol. 56, No. 6, pp. 1125-1138. https://doi.org/10.1016/j.asr.2015.06.015
  6. Baik, J. J., Park, J. M., Kim, K, Y., and Choi, M. H. (2018). "Assessment and merging technique for GPM satellite precipitation product using ground based measurement." Journal of Korea Water Resources Association, Vol. 51, No. 2, pp. 131-140. https://doi.org/10.3741/JKWRA.2018.51.2.131
  7. Baik, J. J., Park, J. M., Rye, D. R., and Choi, M. H. (2016). "Geospatial blending to improve spatial mapping of precipitation with high spatial resolution by merging satellite based and ground-based data." Journal of Hydrological Processes, Vol. 30, No. 16, pp. 2789-2803. https://doi.org/10.1002/hyp.10786
  8. Berndt, C., Rabiei, E., and Haberlandt, U. (2014). "Geostatistical merging of rain gauge and radar data for high temporal resolutions and various station density scenarios." Journal of Hydrology, Vol. 508, pp. 88-101. https://doi.org/10.1016/j.jhydrol.2013.10.028
  9. Cifelli, R., Chandrasekar, Lim, V. S., Kennedy, P. C., Wang, Y., and Rutledge, S. A. (2011). "A new Dual-Polarization Radar Rainfall Algorithm: Application in Colorado Precipitation Events." Journal of Atmospheric and Oceanic Technology, Vol. 28, No. 3, pp. 352-364. https://doi.org/10.1175/2010JTECHA1488.1
  10. Du, J., Xie, S., Xu, Y., Xu,, C., and Vijay, P. S. (2007). "Development and testing of a simple physically based distributed rainfallrunoff model for storm runoff simulation in humid forested basins." Journal of Hydrology, Vol. 336, No. 3-4, pp. 334-346. https://doi.org/10.1016/j.jhydrol.2007.01.015
  11. Ehret, U. (2002). Rainfall and Flood Nowcasting in Small Catechments Using Weather Radar. Ph. D. dissertation, University of Stuttgart.
  12. Hellweger, F.L. (1997). "AGREE-DEM surface reconditioning system." University of Texas, Retrieved from http://www.ce.utexas.edu/prof/maidment/gishydro/ferdi/research/agree/agree.html.
  13. Hong, W. Y., Park, G. A., Jeong, I. K., and Kim, S. J. (2010) "Development of a grid-based daily watershed runoff model and the evaluation of its applicability." Journal of Korean Society of Civil Engineers, Vol. 30, No. 5B, pp. 459-469.
  14. Jang, C. H., Kwon, H. J., Koh, D. K., and Kim, S. J. (2003). "Adjustment of TRM/PR data by ground observed rainfall data and SCS runoff estimation: Yongdam-dam watershed." Journal of Korea Water Resources Association, Vol. 36, No. 4, pp. 647-659. https://doi.org/10.3741/JKWRA.2003.36.4.647
  15. Jang, S. M., Rhee, J. Y., Yoon, S. K., Lee, T. H., and Park, K. W. (2017). "Evaluation of GPM IMERG applicability using SPI based satellite precipitation." Journal of the Korean Society of Agricultural Engineers, Vol. 59, No. 3, pp. 29-39. https://doi.org/10.5389/KSAE.2017.59.3.029
  16. Jeon, B. K., Rhee, C. K., Lee, and Kim, Y. S. (2012). "Evaluation of rainfall measurment capability of dual polarization radar." Journal of Korean Society of Hazard Mitigation, Resources Association, Vol. 12, No. 2, pp. 215-224.
  17. Jung, C. G., Kim, S. J., Lee, Y. G., Lee, D. Y., and Kim, S. H. (2017). "The applicability of KIMSTORM2 for flood simulation using conditional merging method and radar rain data." Journal of Korea Society of Hazard Mitigation, Resources Association, Vol. 17, No. 6, pp. 483-494. https://doi.org/10.9798/KOSHAM.2017.17.6.483
  18. Jung, C. G., Moon, J. W., and Lee, D. R. (2014) "Study on runoff variation by spatial resolution of input GIS data by using distributed rainfall-runoff model." Journal of Korea Water Resources Association, Vol. 47, No.9, pp. 767-776. https://doi.org/10.3741/JKWRA.2014.47.9.767
  19. Jung, I. K., and Kim, S. J. (2003). "Comparison of DEM preprocessing method for efficient watershed and stream network extration." Journal of Korean Society of Civil Engineers, Vol. 23, No. 3D, pp. 393-400.
  20. Jung, I. K., Lee, M. S., Park, J. Y., and Kim, S. J. (2008). "A Modified Grid-based KIneMatic Wave STOrm Runoff Model (ModKIMSTORM) (I): theory and model." Journal of Korean Society of Civil Engineers, Vol. 28, No. 6B, pp. 697-707.
  21. Jung, I. K., Park, J. Y., Joh, H. K., Lee, J. W., and Kim, S. J. (2010a). "Development of stream width and bed-slope estimation equations for preparing data for distributed storm runoff model." Journal of the Korean Society of Agricultural Enginees, Vol. 52, No. 4, pp. 1-10.
  22. Jung, I. K., Park, j. Y., Park, M. J., Shin, H. J., Jeong, H. G., and Kim, S. J. (2010b). "Application of a grid-based rainfall-runoff model using SRTM DEM." Journal of the Korean Association of Geographic Information Studies, Vol. 13, No. 4, pp. 157-169. https://doi.org/10.11108/kagis.2010.13.4.157
  23. Kang, N., Joo, H., Lee, M., and Kim, H. S. (2017). "Generation of radar rainfall ensemble using probabilistic approach." Journal of Korea Water Resources Association, Vol. 50, No. 3, pp. 115-167.
  24. Kim, K. Y., Park, J. M., Baik, J. G., and Choi, M. H. (2017). "Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asis." Atmospheric Research, Vol. 187, pp. 95-105. https://doi.org/10.1016/j.atmosres.2016.12.007
  25. Kim, S. H., Kim, K. T., and Choi, Y. S. (2014). "Runoff estimation using rainfalls derived from multi-satellite images." Journal of the Korean Association of Geographic Information Studies, Vol. 17, No. 1, pp. 107-118. https://doi.org/10.11108/kagis.2014.17.1.107
  26. Kim, S. J. (1998). "Grid-based KIneMatic Wave STOrm Runoff Model (KIMSTORM) (I): Theory and Model." Journal of Korea Water Resources Association, Vol. 31, No. 3, pp. 303-308.
  27. Kim, S. J., and Chae, H. S. (2000). "Groundwater recharge assessment via grid-based soil moisture route modeling." Journal of Korea Water Resources Association, Vol. 33, No. 1, pp. 61-72.
  28. Kim, S. J., Chae, H. S., and Shin, S. C. (1998). "Grid-Based KIneMatic Wave STOrm Runoff Model (KIMSTORM) (II): Application (Applied to Yoncheon Dam Watershed)" Journal of Korea Water Resources Association, Vol. 31, No. 3, pp. 309-315.
  29. Kim, S. J., Shin, S. C., and Suh, A. S. (1999). "Satellite rainfall monitoring: recent progress and its potential applicability." Korean Journal of Agricultural and Forest Meteorology, Vol. 1, No. 2, pp. 142-150.
  30. Kim, T. S., and Jung, Y. H. (2016). "Accurate estimation of settlement profile behind excavation using conditional merging technique." Journal of the Korean Geo-Environmental Society, Vol. 17, No. 8, pp. 39-44.
  31. Lee, J., Choi, M., and Kim, D. (2016). "Spatial merging of satellite based soil moisture and in-situ soil moisture using conditional merging technique." Journal of Korea Water Resources Association, Vol. 49, No. 3, pp. 263-273. https://doi.org/10.3741/JKWRA.2016.49.3.263
  32. Liu, Z. (2015). "Comparison of precipitation estimates between Version 7 3-hourly TRMM Multi-Satellite Precipitation Analysis (TMPA) near-real-time and research products." Atmospheric Research, Vol. 153, pp. 119-133. https://doi.org/10.1016/j.atmosres.2014.07.032
  33. Nash, J. E., and Sutcliffe, J. V. (1970). "River flow forecasting though conceptual models part I: A discussion of principle." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  34. Pergram, G. G. S. (2002). "Spatial interpolation and mapping of rainfall: 3. optimal integration of rain gauge, radar & satellite-derived data in the production of daily rainfall maps." Progress Report to the Water Research Commission.
  35. Rygram, A., Giangrande, S. E., and Schurr, T. J. (2005). "Rainfall Estimation with a Polarimetric Prototype of WSR-88D." Journal of Applied Meteorology, Vol. 44, No. 4, pp. 502-515. https://doi.org/10.1175/JAM2213.1
  36. Soe, E. K. (2012). "Rainfall characteristics in the tropical oceans: observations using TRMM TMI and PR." Journal of Korean Earth Science Society, Vol. 33, No. 2, pp. 113-125. https://doi.org/10.5467/JKESS.2012.33.2.113
  37. Sharifi, E. R. Steinacker, and B. Saghafian, (2016). "Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in iran: preliminary results." Remot Sensing, Vol. 9, No. 2, pp. 135. https://doi.org/10.3390/rs9020135
  38. Wang, W., and Lu, H. (2016). "Evaluation and comparison of newest GPM and TRMM products over Mekong river basin at daily scale." Proceedings Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International, pp. 613-616.
  39. Worqlul, A. W., Maathuis, B., Adem, A. A., Demissie, S. S., Langan, S., and Steenhuis, T. S. (2014). "Comparison of rainfall estimations by TRMM 3B42, MPEG and CFSR with ground observed data for the Lake Tana basin in Ethiopia." Hydrology and Earth System Sciences, Vol. 18, No. 12, pp. 4871-4881. https://doi.org/10.5194/hess-18-4871-2014