DOI QR코드

DOI QR Code

Mitochondria: multifaceted regulators of aging

  • Son, Jyung Mean (Leonard Davis School of Gerontology, University of Southern California) ;
  • Lee, Changhan (Leonard Davis School of Gerontology, University of Southern California)
  • Received : 2018.11.04
  • Published : 2019.01.31

Abstract

Aging is accompanied by a time-dependent progressive deterioration of multiple factors of the cellular system. The past several decades have witnessed major leaps in our understanding of the biological mechanisms of aging using dietary, genetic, pharmacological, and physical interventions. Metabolic processes, including nutrient sensing pathways and mitochondrial function, have emerged as prominent regulators of aging. Mitochondria have been considered to play a key role largely due to their production of reactive oxygen species (ROS), resulting in DNA damage that accumulates over time and ultimately causes cellular failure. This theory, known as the mitochondrial free radical theory of aging (MFRTA), was favored by the aging field, but increasing inconsistent evidence has led to criticism and rejection of this idea. However, MFRTA should not be hastily rejected in its entirety because we now understand that ROS is not simply an undesired toxic metabolic byproduct, but also an important signaling molecule that is vital to cellular fitness. Notably, mitochondrial function, a term traditionally referred to bioenergetics and apoptosis, has since expanded considerably. It encompasses numerous other key biological processes, including the following: (i) complex metabolic processes, (ii) intracellular and endocrine signaling/communication, and (iii) immunity/inflammation. Here, we will discuss shortcomings of previous concepts regarding mitochondria in aging and their emerging roles based on recent advances. We will also discuss how the mitochondrial genome integrates with major theories on the evolution of aging.

Keywords

References

  1. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11, 298-300 https://doi.org/10.1093/geronj/11.3.298
  2. Harman D (2009) Origin and evolution of the free radical theory of aging: a brief personal history, 1954-2009. Biogerontology 10, 773 https://doi.org/10.1007/s10522-009-9234-2
  3. Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20, 145-147 https://doi.org/10.1111/j.1532-5415.1972.tb00787.x
  4. Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A 94, 514-519 https://doi.org/10.1073/pnas.94.2.514
  5. Kazak L, Reyes A, Holt IJ (2012) Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 13, 659-671 https://doi.org/10.1038/nrm3439
  6. Kang D, Kim SH, Hamasaki N (2007) Mitochondrial transcription factor A (TFAM): roles in maintenance of mtDNA and cellular functions. Mitochondrion 7, 39-44 https://doi.org/10.1016/j.mito.2006.11.017
  7. Lee SR, Han J (2017) Mitochondrial nucleoid: shield and switch of the mitochondrial genome. Oxid Med Cell Longev 2017 [Epub ahead of print]
  8. Chen H, Vermulst M, Wang YE et al (2010) Mitochondrial Fusion Is Required for mtDNA Stability in Skeletal Muscle and Tolerance of mtDNA Mutations. Cell 141, 280-289 https://doi.org/10.1016/j.cell.2010.02.026
  9. Prevost CT, Peris N, Seger C et al (2018) The influence of mitochondrial dynamics on mitochondrial genome stability. Curr Genet 64, 199-214 https://doi.org/10.1007/s00294-017-0717-4
  10. Pickles S, Vigie P, Youle RJ (2018) Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Curr Biol 28, R170-R185 https://doi.org/10.1016/j.cub.2018.01.004
  11. Cortopassi GA, Arnheim N (1990) Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res 18, 6927-6933 https://doi.org/10.1093/nar/18.23.6927
  12. Piko L, Hougham AJ, Bulpitt KJ (1988) Studies of sequence heterogeneity of mitochondrial DNA from rat and mouse tissues: evidence for an increased frequency of deletions/additions with aging. Mech Ageing Dev 43, 279-293 https://doi.org/10.1016/0047-6374(88)90037-1
  13. Larsson NG (2010) Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem 79, 683-706 https://doi.org/10.1146/annurev-biochem-060408-093701
  14. Payne BA, Wilson IJ, Yu-Wai-Man P et al (2013) Universal heteroplasmy of human mitochondrial DNA. Hum Mol Genet 22, 384-390 https://doi.org/10.1093/hmg/dds435
  15. Linnane AW, Marzuki S, Ozawa T, Tanaka M (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1, 642-645
  16. Khrapko K, Vijg J (2009) Mitochondrial DNA mutations and aging: devils in the details? Trends Genet 25, 91-98 https://doi.org/10.1016/j.tig.2008.11.007
  17. Rossignol R, Faustin B, Rocher C, Malgat M, Mazat JP, Letellier T (2003) Mitochondrial threshold effects. Biochem J 370, 751-762 https://doi.org/10.1042/bj20021594
  18. Stewart JB, Chinnery PF (2015) The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet 16, 530-542 https://doi.org/10.1038/nrg3966
  19. Kauppila TES, Kauppila JHK, Larsson NG (2017) Mammalian Mitochondria and Aging: An Update. Cell Metab 25, 57-71 https://doi.org/10.1016/j.cmet.2016.09.017
  20. Pomatto LCD, Davies KJA (2018) Adaptive homeostasis and the free radical theory of ageing. Free Radic Biol Med 124, 420-430 https://doi.org/10.1016/j.freeradbiomed.2018.06.016
  21. Unlu ES, Koc A (2007) Effects of deleting mitochondrial antioxidant genes on life span. Ann N Y Acad Sci 1100, 505-509 https://doi.org/10.1196/annals.1395.055
  22. Longo VD, Gralla EB, Valentine JS (1996) Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae Mitochondrial production of toxic oxygen species in vivo. J Biol Chem 271, 12275-12280 https://doi.org/10.1074/jbc.271.21.12275
  23. Doonan R, McElwee JJ, Matthijssens F et al (2008) Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev 22, 3236-3241 https://doi.org/10.1101/gad.504808
  24. Kirby K, Hu J, Hilliker AJ, Phillips JP (2002) RNA interference-mediated silencing of Sod2 in Drosophila leads to early adult-onset mortality and elevated endogenous oxidative stress. Proc Natl Acad Sci U S A 99, 16162-16167 https://doi.org/10.1073/pnas.252342899
  25. Martin I, Jones MA, Rhodenizer D et al (2009) Sod2 knockdown in the musculature has whole-organism consequences in Drosophila. Free Radic Biol Med 47, 803-813 https://doi.org/10.1016/j.freeradbiomed.2009.06.021
  26. Duttaroy A, Paul A, Kundu M, Belton A (2003) A Sod2 null mutation confers severely reduced adult life span in Drosophila. Genetics 165, 2295-2299 https://doi.org/10.1093/genetics/165.4.2295
  27. Wicks S, Bain N, Duttaroy A, Hilliker AJ, Phillips JP (2009) Hypoxia rescues early mortality conferred by superoxide dismutase deficiency. Free Radic Biol Med 46, 176-181 https://doi.org/10.1016/j.freeradbiomed.2008.09.036
  28. Perez VI, Bokov A, Van Remmen H et al (2009) Is the oxidative stress theory of aging dead? Biochim Biophys Acta 1790, 1005-1014 https://doi.org/10.1016/j.bbagen.2009.06.003
  29. Fabrizio P, Liou LL, Moy VN et al (2003) SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163, 35-46 https://doi.org/10.1093/genetics/163.1.35
  30. Cabreiro F, Ackerman D, Doonan R et al (2011) Increased life span from overexpression of superoxide dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage. Free Radic Biol Med 51, 1575-1582 https://doi.org/10.1016/j.freeradbiomed.2011.07.020
  31. Melov S, Ravenscroft J, Malik S et al (2000) Extension of Life-Span with Superoxide Dismutase/Catalase Mimetics. Science 289, 1567-1569 https://doi.org/10.1126/science.289.5484.1567
  32. Curtis C, Landis GN, Folk D et al (2007) Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophilareveals a species-general network of aging and metabolic genes. Genome Biol 8, R262 https://doi.org/10.1186/gb-2007-8-12-r262
  33. Sun J, Folk D, Bradley TJ, Tower J (2002) Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics 161, 661-672 https://doi.org/10.1093/genetics/161.2.661
  34. Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Phillips JP, Boulianne GL (1998) Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet 19, 171-174 https://doi.org/10.1038/534
  35. Schriner SE, Linford NJ, Martin GM et al (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909-1911 https://doi.org/10.1126/science.1106653
  36. Lee HY, Choi CS, Birkenfeld AL et al (2010) Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance. Cell Metab 12, 668-674 https://doi.org/10.1016/j.cmet.2010.11.004
  37. Brooks AR, Harkins RN, Wang P, Qian HS, Liu P, Rubanyi GM (2004) Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. J Gene Med 6, 395-404 https://doi.org/10.1002/jgm.516
  38. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17, 1195-1214 https://doi.org/10.1096/fj.02-0752rev
  39. Vermulst M, Bielas JH, Kujoth GC (2007) Mitochondrial point mutations do not limit the natural lifespan of mice. Nat Genet 39, 540-543 https://doi.org/10.1038/ng1988
  40. Ameur A, Stewart JB, Freyer C et al (2011) Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins. PLoS Genet 7, e1002028 https://doi.org/10.1371/journal.pgen.1002028
  41. Kennedy SR, Salk JJ, Schmitt MW, Loeb LA (2013) Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet 9, e1003794 https://doi.org/10.1371/journal.pgen.1003794
  42. Trifunovic A, Wredenberg A, Falkenberg M et al (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417-423 https://doi.org/10.1038/nature02517
  43. Edgar D, Shabalina I, Camara Y et al (2009) Random point mutations with major effects on protein-coding genes are the driving force behind premature aging in mtDNA mutator mice. Cell Metab 10, 131-138 https://doi.org/10.1016/j.cmet.2009.06.010
  44. Kujoth GC, Hiona A, Pugh TD et al (2005) Mitochondrial DNA Mutations, Oxidative Stress, and Apoptosis in Mammalian Aging. Science 309, 481-484 https://doi.org/10.1126/science.1112125
  45. Trifunovic A, Hansson A, Wredenberg A et al (2005) Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci U S A 102, 17993-17998 https://doi.org/10.1073/pnas.0508886102
  46. Logan A, Shabalina IG, Prime TA et al (2014) In vivo levels of mitochondrial hydrogen peroxide increase with age in mtDNA mutator mice. Aging Cell 13, 765-768 https://doi.org/10.1111/acel.12212
  47. DeBalsi KL, Hoff KE, Copeland WC (2017) Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. Ageing Res Rev 33, 89-104 https://doi.org/10.1016/j.arr.2016.04.006
  48. Bua E, Johnson J, Herbst A et al (2006) Mitochondrial DNA-Deletion Mutations Accumulate Intracellularly to Detrimental Levels in Aged Human Skeletal Muscle Fibers. Am J Hum Genet 79, 469-480 https://doi.org/10.1086/507132
  49. Cortopassi GA, Arnheim N (1990) Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res 18, 6927-6933 https://doi.org/10.1093/nar/18.23.6927
  50. Bender A, Krishnan KJ, Morris CM et al (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38, 515-517 https://doi.org/10.1038/ng1769
  51. Vermulst M, Wanagat J, Kujoth GC et al (2008) DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat Genet 40, 392-394 https://doi.org/10.1038/ng.95
  52. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39, 359-407 https://doi.org/10.1146/annurev.genet.39.110304.095751
  53. Sarsour EH, Kalen AL, Goswami PC (2014) Manganese superoxide dismutase regulates a redox cycle within the cell cycle. Antioxid Redox Signal 20, 1618-1627 https://doi.org/10.1089/ars.2013.5303
  54. Ristow M (2014) Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat Med 20, 709-711 https://doi.org/10.1038/nm.3624
  55. Sun N, Youle RJ, Finkel T (2016) The Mitochondrial Basis of Aging. Mol Cell 61, 654-666 https://doi.org/10.1016/j.molcel.2016.01.028
  56. Shadel GS, Horvath TL (2015) Mitochondrial ROS signaling in organismal homeostasis. Cell 163, 560-569 https://doi.org/10.1016/j.cell.2015.10.001
  57. Lee SS, Lee RY, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33, 40-48 https://doi.org/10.1038/ng1056
  58. Dillin A, Hsu AL, Arantes-Oliveira N et al (2002) Rates of behavior and aging specified by mitochondrial function during development. Science 298, 2398-2401 https://doi.org/10.1126/science.1077780
  59. Zarse K, Schmeisser S, Groth M et al (2012) Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell Metab 15, 451-465 https://doi.org/10.1016/j.cmet.2012.02.013
  60. Lee SJ, Hwang AB, Kenyon C (2010) Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr Biol 20, 2131-2136 https://doi.org/10.1016/j.cub.2010.10.057
  61. Munoz-Najar U, Sedivy JM (2011) Epigenetic control of aging. Antioxid Redox Signal 14, 241-259 https://doi.org/10.1089/ars.2010.3250
  62. Rando TA, Chang HY (2012) Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148, 46-57 https://doi.org/10.1016/j.cell.2012.01.003
  63. Schroeder EA, Raimundo N, Shadel GS (2013) Epigenetic silencing mediates mitochondria stressinduced longevity. Cell Metab 17, 954-964 https://doi.org/10.1016/j.cmet.2013.04.003
  64. Shpilka T, Haynes CM (2018) The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol 19, 109-120 https://doi.org/10.1038/nrm.2017.110
  65. Nargund AM, Fiorese CJ, Pellegrino MW, Deng P, Haynes CM (2015) Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR mt. Mol Cell 58, 123-133 https://doi.org/10.1016/j.molcel.2015.02.008
  66. Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, Haynes CM (2012) Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337, 587-590 https://doi.org/10.1126/science.1223560
  67. Tian Y, Garcia G, Bian Q et al (2016) Mitochondrial Stress Induces Chromatin Reorganization to Promote Longevity and UPR(mt). Cell 165, 1197-1208 https://doi.org/10.1016/j.cell.2016.04.011
  68. Felkai S, Ewbank JJ, Lemieux J, Labbe JC, Brown GG, Hekimi S (1999) CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. EMBO J 18, 1783-1792 https://doi.org/10.1093/emboj/18.7.1783
  69. Liu X, Jiang N, Hughes B, Bigras E, Shoubridge E, Hekimi S (2005) Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice. Genes Dev 19, 2424-2434 https://doi.org/10.1101/gad.1352905
  70. Frezza C (2017) Mitochondrial metabolites: undercover signalling molecules. Interface Focus 7, 20160100 https://doi.org/10.1098/rsfs.2016.0100
  71. Sullivan LB, Gui DY, Vander Heiden MG (2016) Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat Rev Cancer 16, 680-693 https://doi.org/10.1038/nrc.2016.85
  72. Menzies KJ, Zhang H, Katsyuba E, Auwerx J (2016) Protein acetylation in metabolism-metabolites and cofactors. Nat Rev Endocrinol 12, 43-60 https://doi.org/10.1038/nrendo.2015.181
  73. Sutendra G, Kinnaird A, Dromparis P et al (2014) A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158, 84-97 https://doi.org/10.1016/j.cell.2014.04.046
  74. Shi L, Tu BP (2015) Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol 33, 125-131 https://doi.org/10.1016/j.ceb.2015.02.003
  75. Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M (2014) The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 15, 536-550 https://doi.org/10.1038/nrm3841
  76. Xie Z, Dai J, Dai L et al (2012) Lysine succinylation and lysine malonylation in histones. Mol Cell Proteomics 11, 100-107 https://doi.org/10.1074/mcp.M111.015875
  77. Benayoun BA, Pollina EA, Brunet A (2015) Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16, 593-610 https://doi.org/10.1038/nrm4048
  78. Schultz MB, Sinclair DA (2016) Why NAD+ Declines during Aging: It's Destroyed. Cell Metab 23, 965-966 https://doi.org/10.1016/j.cmet.2016.05.022
  79. Camacho-Pereira J, Tarrago MG, Chini CCS et al (2016) CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism. Cell Metab 23, 1127-1139 https://doi.org/10.1016/j.cmet.2016.05.006
  80. Imai S-I, Guarente L (2016) It takes two to tango: NAD+ and sirtuins in aging/longevity control. NPJ Aging Mech Dis 2, 16017 https://doi.org/10.1038/npjamd.2016.17
  81. Gomes AP, Price NL, Ling AJ et al (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624-1638 https://doi.org/10.1016/j.cell.2013.11.037
  82. Mouchiroud L, Houtkooper RH, Moullan N et al (2013) The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430-441 https://doi.org/10.1016/j.cell.2013.06.016
  83. Yoshino J, Mills KF, Yoon MJ, Imai S (2011) Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet-and age-induced diabetes in mice. Cell Metab 14, 528-536 https://doi.org/10.1016/j.cmet.2011.08.014
  84. Quiros PM, Mottis A, Auwerx J (2016) Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol 17, 213-226 https://doi.org/10.1038/nrm.2016.23
  85. Mammucari C, Gherardi G, Zamparo I et al (2015) The mitochondrial calcium uniporter controls skeletal muscle trophism in vivo. Cell Rep 10, 1269-1279 https://doi.org/10.1016/j.celrep.2015.01.056
  86. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A (2018) Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14, 576-590 https://doi.org/10.1038/s41574-018-0059-4
  87. Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29, 707-735 https://doi.org/10.1146/annurev-immunol-031210-101405
  88. Wenceslau CF, McCarthy CG, Szasz T et al (2014) Mitochondrial damage-associated molecular patterns and vascular function. Eur Heart J 35, 1172-1177 https://doi.org/10.1093/eurheartj/ehu047
  89. Zhang Q, Raoof M, Chen Y et al (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104-107 https://doi.org/10.1038/nature08780
  90. Grazioli S, Pugin J (2018) Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Front Immunol 9, 832 https://doi.org/10.3389/fimmu.2018.00832
  91. Pinti M, Cevenini E, Nasi M et al (2014) Circulating mitochondrial DNA increases with age and is a familiar trait: Implications for "inflamm-aging". Eur J Immunol 44, 1552-1562 https://doi.org/10.1002/eji.201343921
  92. Furman D, Chang J, Lartigue L et al (2017) Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat Med 23, 174-184 https://doi.org/10.1038/nm.4267
  93. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A (2018) Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14, 576-590 https://doi.org/10.1038/s41574-018-0059-4
  94. Kim SJ, Xiao J, Wan J, Cohen P, Yen K (2017) Mitochondrially derived peptides as novel regulators of metabolism. J Physiol 595, 6613-6621 https://doi.org/10.1113/JP274472
  95. Hashimoto Y, Niikura T, Tajima H et al (2001) A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Abeta. Proc Natl Acad Sci U S A 98, 6336-6341 https://doi.org/10.1073/pnas.101133498
  96. Ikonen M, Liu B, Hashimoto Y et al (2003) Interaction between the Alzheimer's survival peptide humanin and insulin-like growth factor-binding protein 3 regulates cell survival and apoptosis. Proc Natl Acad Sci U S A 100, 13042-13047 https://doi.org/10.1073/pnas.2135111100
  97. Guo B, Zhai D, Cabezas E et al (2003) Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423, 456-461 https://doi.org/10.1038/nature01627
  98. Cobb LJ, Lee C, Xiao J et al (2016) Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers. Aging 8, 796-809 https://doi.org/10.18632/aging.100943
  99. Zarse K, Ristow M (2015) A mitochondrially encoded hormone ameliorates obesity and insulin resistance. Cell Metab 21, 355-356 https://doi.org/10.1016/j.cmet.2015.02.013
  100. Lee C, Zeng J, Drew BG et al (2015) The mitochondrialderived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab 21, 443-454 https://doi.org/10.1016/j.cmet.2015.02.009
  101. Lee C, Kim KH, Cohen P (2016) MOTS-c: A novel mitochondrial-derived peptide regulating muscle and fat metabolism. Free Radic Biol Med 100, 182-187 https://doi.org/10.1016/j.freeradbiomed.2016.05.015
  102. Kim KH, Son JM, Benayoun BA, Lee C (2018) The Mitochondrial-Encoded Peptide MOTS-c Translocates to the Nucleus to Regulate Nuclear Gene Expression in Response to Metabolic Stress. Cell Metab 28, 516-524 https://doi.org/10.1016/j.cmet.2018.06.008
  103. Mangalhara KC, Shadel GS (2018) A Mitochondrial-Derived Peptide Exercises the Nuclear Option. Cell Metab 28, 330-331 https://doi.org/10.1016/j.cmet.2018.08.017
  104. Wong W (2018) Going nuclear with stress. Science Signaling 11, eaav4285 https://doi.org/10.1126/scisignal.aav4285
  105. Muzumdar RH, Huffman DM, Atzmon G et al (2009) Humanin: a novel central regulator of peripheral insulin action. PLoS One 4, e6334 https://doi.org/10.1371/journal.pone.0006334
  106. Lee C, Wan J, Miyazaki B et al (2014) IGF-I regulates the age-dependent signaling peptide humanin. Aging Cell 13, 958-961 https://doi.org/10.1111/acel.12243
  107. Fuku N, Pareja-Galeano H, Zempo H et al (2015) The mitochondrial-derived peptide MOTS-c: a player in exceptional longevity? Aging Cell 14, 921-923 https://doi.org/10.1111/acel.12389
  108. Zempo H, Fuku N, Nishida Y et al (2016) Relation between type 2 diabetes and m. 1382 A> C polymorphism which occurs amino acid replacement (K14Q) of mitochondria-derived MOTS-c. FASEB J 30, 956.1
  109. Price NL, Gomes AP, Ling AJ et al (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15, 675-690 https://doi.org/10.1016/j.cmet.2012.04.003
  110. Canto C, Gerhart-Hines Z, Feige JN et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060 https://doi.org/10.1038/nature07813
  111. Dunham-Snary KJ, Ballinger SW (2015) GENETICS. Mitochondrial-nuclear DNA mismatch matters. Science 349, 1449-1450 https://doi.org/10.1126/science.aac5271
  112. Rand DM (2017) Fishing for adaptive epistasis using mitonuclear interactions. PLoS Genet 13, e1006662 https://doi.org/10.1371/journal.pgen.1006662
  113. Tranah GJ (2011) Mitochondrial-nuclear epistasis: Implications for human aging and longevity. Ageing Res Rev 10, 238-252 https://doi.org/10.1016/j.arr.2010.06.003
  114. McManus MJ, Picard M, Chen HW et al (2018) Mitochondrial DNA Variation Dictates Expressivity and Progression of Nuclear DNA Mutations Causing Cardiomyopathy. Cell Metab [Epub ahead of print]
  115. Deuse T, Wang D, Stubbendorff M et al (2015) SCNT-derived ESCs with mismatched mitochondria trigger an immune response in allogeneic hosts. Cell Stem Cell 16, 33-38 https://doi.org/10.1016/j.stem.2014.11.003
  116. Betancourt AM, King AL, Fetterman JL et al (2014) Mitochondrial-nuclear genome interactions in non-alcoholic fatty liver disease in mice. Biochemical J 461, 223-232 https://doi.org/10.1042/BJ20131433
  117. Fetterman JL, Zelickson BR, Johnson LW et al (2013) Mitochondrial genetic background modulates bioenergetics and susceptibility to acute cardiac volume overload. Biochemical J 455, 157-167 https://doi.org/10.1042/BJ20130029
  118. Raimundo N, Krisko A (2018) Cross-organelle communication at the core of longevity. Aging 10, 15-16 https://doi.org/10.18632/aging.101373
  119. Rieusset J (2018) The role of endoplasmic reticulummitochondria contact sites in the control of glucose homeostasis: an update. Cell Death Dis 9, 388 https://doi.org/10.1038/s41419-018-0416-1
  120. Janikiewicz J, Szymanski J, Malinska D et al (2018) Mitochondria-associated membranes in aging and senescence: structure, function, and dynamics. Cell Death Dis 9, 332 https://doi.org/10.1038/s41419-017-0105-5
  121. Wang CH, Chen YF, Wu CY et al (2014) Cisd2 modulates the differentiation and functioning of adipocytes by regulating intracellular Ca2+ homeostasis. Hum Mol Genet 23, 4770-4785 https://doi.org/10.1093/hmg/ddu193
  122. Chen YF, Kao CH, Chen YT et al (2009) Cisd2 deficiency drives premature aging and causes mitochondriamediated defects in mice. Genes Dev 23, 1183-1194 https://doi.org/10.1101/gad.1779509
  123. Titorenko VI, Terlecky SR (2011) Peroxisome metabolism and cellular aging. Traffic 12, 252-259 https://doi.org/10.1111/j.1600-0854.2010.01144.x
  124. Sebastian D, Palacin M, Zorzano A (2017) Mitochondrial dynamics: coupling mitochondrial fitness with healthy aging. Trends Mol Med 23, 201-215 https://doi.org/10.1016/j.molmed.2017.01.003
  125. Koepke JI, Nakrieko KA, Wood CS et al (2007) Restoration of peroxisomal catalase import in a model of human cellular aging. Traffic 8, 1590-1600 https://doi.org/10.1111/j.1600-0854.2007.00633.x
  126. Santos MJ, Quintanilla RA, Toro A et al (2005) Peroxisomal proliferation protects from ${\beta}$-amyloid neurodegeneration. J Biol Chem 280, 41057-41068 https://doi.org/10.1074/jbc.M505160200
  127. Nell HJ, Au JL, Giordano CR et al (2017) Targeted Antioxidant, Catalase-SKL, Reduces Beta-Amyloid Toxicity in the Rat Brain. Brain Pathol 27, 86-94 https://doi.org/10.1111/bpa.12368
  128. Yoboue ED, Sitia R, Simmen T (2018) Redox crosstalk at endoplasmic reticulum (ER) membrane contact sites (MCS) uses toxic waste to deliver messages. Cell Death Dis 9, 331 https://doi.org/10.1038/s41419-017-0033-4
  129. Carmona-Gutierrez D, Hughes AL, Madeo F, Ruckenstuhl C (2016) The crucial impact of lysosomes in aging and longevity. Ageing Res Rev 32, 2-12 https://doi.org/10.1016/j.arr.2016.04.009
  130. Soto-Heredero G, Baixauli F, Mittelbrunn M (2017) Interorganelle communication between mitochondria and the endolysosomal system. Front Cell Dev Biol 5, 95 https://doi.org/10.3389/fcell.2017.00095
  131. Hughes AL, Gottschling DE (2012) An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492, 261-265 https://doi.org/10.1038/nature11654
  132. Elbaz-Alon Y, Rosenfeld-Gur E, Shinder V, Futerman AH, Geiger T, Schuldiner M (2014) A dynamic interface between vacuoles and mitochondria in yeast. Dev Cell 30, 95-102 https://doi.org/10.1016/j.devcel.2014.06.007
  133. Klecker T, Westermann B (2014) Mitochondria Are Clamped to Vacuoles for Lipid Transport. Dev Cell 30, 1-2 https://doi.org/10.1016/j.devcel.2014.06.024
  134. Murley A, Sarsam RD, Toulmay A, Yamada J, Prinz WA, Nunnari J (2015) Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts. J Cell Biol 209, 539-548 https://doi.org/10.1083/jcb.201502033
  135. Honscher C, Mari M, Auffarth K et al (2014) Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev Cell 30, 86-94 https://doi.org/10.1016/j.devcel.2014.06.006
  136. Durieux J, Wolff S, Dillin A (2011) The cell-nonautonomous nature of electron transport chain-mediated longevity. Cell 144, 79-91 https://doi.org/10.1016/j.cell.2010.12.016
  137. Woo DK, Shadel GS (2011) Mitochondrial stress signals revise an old aging theory. Cell 144, 11-12 https://doi.org/10.1016/j.cell.2010.12.023
  138. Zhang Q, Wu X, Chen P et al (2018) The mitochondrial unfolded protein response is mediated cell-nonautonomously by retromer-dependent Wnt signaling. Cell 174, 870-883.e817 https://doi.org/10.1016/j.cell.2018.06.029
  139. Owusu-Ansah E, Song W, Perrimon N (2013) Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155, 699-712 https://doi.org/10.1016/j.cell.2013.09.021
  140. Kim KH, Jeong YT, Oh H et al (2012) Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 19, 83-92 https://doi.org/10.1038/nm.3014
  141. Berendzen KM, Durieux J, Shao LW et al (2016) Neuroendocrine coordination of mitochondrial stress signaling and proteostasis. Cell 166, 1553-1563.e1510 https://doi.org/10.1016/j.cell.2016.08.042
  142. Shao L-W, Niu R, Liu Y (2016) Neuropeptide signals cell non-autonomous mitochondrial unfolded protein response. Cell Res 26, 1182-1196 https://doi.org/10.1038/cr.2016.118
  143. da Cunha FM, Torelli NQ, Kowaltowski AJ (2015) Mitochondrial Retrograde Signaling: Triggers, Pathways, and Outcomes. Oxid Med Cell Longev 2015, 482582
  144. Lee C, Kim KH, Cohen P (2016) MOTS-c: a novel mitochondrial-derived peptide regulating muscle and fat metabolism. Free Radic Biol Med 100, 182-187 https://doi.org/10.1016/j.freeradbiomed.2016.05.015
  145. Bachar AR, Scheffer L, Schroeder AS et al (2010) Humanin is expressed in human vascular walls and has a cytoprotective effect against oxidized LDL-induced oxidative stress. Cardiovasc Res 88, 360-366 https://doi.org/10.1093/cvr/cvq191
  146. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M et al (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med 3, 70ra13 https://doi.org/10.1126/scitranslmed.3001845
  147. Cobb LJ, Lee C, Xiao J et al (2016) Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers. Aging 8, 796-809 https://doi.org/10.18632/aging.100943