DOI QR코드

DOI QR Code

Sirtuin signaling in cellular senescence and aging

  • Lee, Shin-Hae (Department of Biological Sciences, Inha University) ;
  • Lee, Ji-Hyeon (Department of Biological Sciences, Inha University) ;
  • Lee, Hye-Yeon (Department of Biological Sciences, Inha University) ;
  • Min, Kyung-Jin (Department of Biological Sciences, Inha University)
  • Received : 2018.10.18
  • Published : 2019.01.31

Abstract

Sirtuin is an essential factor that delays cellular senescence and extends the organismal lifespan through the regulation of diverse cellular processes. Suppression of cellular senescence by Sirtuin is mainly mediated through delaying the age-related telomere attrition, sustaining genome integrity and promotion of DNA damage repair. In addition, Sirtuin modulates the organismal lifespan by interacting with several lifespan regulating signaling pathways including insulin/IGF-1 signaling pathway, AMP-activated protein kinase, and forkhead box O. Although still controversial, it is suggested that the prolongevity effect of Sirtuin is dependent with the level of and with the tissue expression of Sirtuin. Since Sirtuin is also believed to mediate the prolongevity effect of calorie restriction, activators of Sirtuin have attracted the attention of researchers to develop therapeutics for age-related diseases. Resveratrol, a phytochemical rich in the skin of red grapes and wine, has been actively investigated to activate Sirtuin activity with consequent beneficial effects on aging. This article reviews the evidences and controversies regarding the roles of Sirtuin on cellular senescence and lifespan extension, and summarizes the activators of Sirtuin including Sirtuin-activating compounds and compounds that increase the cellular level of nicotinamide dinucleotide.

Keywords

References

  1. North BJ and Verdin E (2004) Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol 5, 224 https://doi.org/10.1186/gb-2004-5-5-224
  2. Toiber D, Sebastian C and Mostoslavsky R (2011) Characterization of nuclear sirtuins: molecular mechanisms and physiological relevance. Handb Exp Pharmacol 206, 189-224 https://doi.org/10.1007/978-3-642-21631-2_9
  3. Guarente L (2000) Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 14, 1021-1026
  4. Kaeberlein M, McVey M and Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13, 2570-2580 https://doi.org/10.1101/gad.13.19.2570
  5. Imai S, Armstrong CM, Kaeberlein M and Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795-800 https://doi.org/10.1038/35001622
  6. Landry J, Sutton A, Tafrov ST et al (2000) The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A 97, 5807-5811 https://doi.org/10.1073/pnas.110148297
  7. Grabowska W, Sikora E and Bielak-Zmijewska A (2017) Sirtuins, a promising target in slowing down the ageing process. Biogerontology 18, 447-476 https://doi.org/10.1007/s10522-017-9685-9
  8. Bamps S, Wirtz J, Savory FR, Lake D and Hope IA (2009) The Caenorhabditis elegans sirtuin gene, sir-2.1, is widely expressed and induced upon caloric restriction. Mech Ageing Dev 130, 762-770 https://doi.org/10.1016/j.mad.2009.10.001
  9. Newman BL, Lundblad JR, Chen Y and Smolik SM (2002) A Drosophila homologue of Sir2 modifies position-effect variegation but does not affect life span. Genetics 162, 1675-1685 https://doi.org/10.1093/genetics/162.4.1675
  10. Rogina B and Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101, 15998-16003 https://doi.org/10.1073/pnas.0404184101
  11. Wood JG, Schwer B, Wickremesinghe PC et al (2018) Sirt4 is a mitochondrial regulator of metabolism and lifespan in Drosophila melanogaster. Proc Natl Acad Sci U S A 115, 1564-1569 https://doi.org/10.1073/pnas.1720673115
  12. Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273, 793-798 https://doi.org/10.1006/bbrc.2000.3000
  13. Michishita E, Park JY, Burneskis JM, Barrett JC and Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16, 4623-4635 https://doi.org/10.1091/mbc.e05-01-0033
  14. Scher MB, Vaquero A and Reinberg D (2007) SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev 21, 920-928 https://doi.org/10.1101/gad.1527307
  15. Du J, Zhou Y, Su X et al (2011) Sirt5 is a NADdependent protein lysine demalonylase and desuccinylase. Science 334, 806-809 https://doi.org/10.1126/science.1207861
  16. Cristofalo VJ, Lorenzini A, Allen RG, Torres C and Tresini M (2004) Replicative senescence: a critical review. Mech Ageing Dev 125, 827-848 https://doi.org/10.1016/j.mad.2004.07.010
  17. Munoz-Espin D and Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15, 482-496 https://doi.org/10.1038/nrm3823
  18. Krtolica A and Campisi J (2002) Cancer and aging: a model for the cancer promoting effects of the aging stroma. Int J Biochem Cell Biol 34, 1401-1414 https://doi.org/10.1016/S1357-2725(02)00053-5
  19. Sasaki T, Maier B, Bartke A and Scrable H (2006) Progressive loss of SIRT1 with cell cycle withdrawal. Aging Cell 5, 413-422 https://doi.org/10.1111/j.1474-9726.2006.00235.x
  20. Anwar T, Khosla S and Ramakrishna G (2016) Increased expression of SIRT2 is a novel marker of cellular senescence and is dependent on wild type p53 status. Cell Cycle 15, 1883-1897 https://doi.org/10.1080/15384101.2016.1189041
  21. Son MJ, Kwon Y, Son T and Cho YS (2016) Restoration of Mitochondrial NAD(+) Levels Delays Stem Cell Senescence and Facilitates Reprogramming of Aged Somatic Cells. Stem Cells 34, 2840-2851 https://doi.org/10.1002/stem.2460
  22. Chen J, Xie JJ, Jin MY et al (2018) Sirt6 overexpression suppresses senescence and apoptosis of nucleus pulposus cells by inducing autophagy in a model of intervertebral disc degeneration. Cell Death Dis 9, 56 https://doi.org/10.1038/s41419-017-0085-5
  23. Ota H, Akishita M, Eto M, Iijima K, Kaneki M and Ouchi Y (2007) Sirt1 modulates premature senescence-like phenotype in human endothelial cells. J Mol Cell Cardiol 43, 571-579 https://doi.org/10.1016/j.yjmcc.2007.08.008
  24. Menghini R, Casagrande V, Cardellini M et al (2009) MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120, 1524-1532 https://doi.org/10.1161/CIRCULATIONAHA.109.864629
  25. Mostoslavsky R, Chua KF, Lombard DB et al (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315-329 https://doi.org/10.1016/j.cell.2005.11.044
  26. Kim MY, Kang ES, Ham SA et al (2012) The PPARdelta-mediated inhibition of angiotensin II-induced premature senescence in human endothelial cells is SIRT1-dependent. Biochem Pharmacol 84, 1627-1634 https://doi.org/10.1016/j.bcp.2012.09.008
  27. Yao H, Chung S, Hwang JW et al (2012) SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J Clin Invest 122, 2032-2045 https://doi.org/10.1172/JCI60132
  28. Zu Y, Liu L, Lee MY et al (2010) SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells. Circ Res 106, 1384-1393 https://doi.org/10.1161/CIRCRESAHA.109.215483
  29. Michan S and Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404, 1-13 https://doi.org/10.1042/BJ20070140
  30. Rosenberg MI and Parkhurst SM (2002) Drosophila Sir2 is required for heterochromatic silencing and by euchromatic Hairy/E(Spl) bHLH repressors in segmentation and sex determination. Cell 109, 447-458 https://doi.org/10.1016/S0092-8674(02)00732-8
  31. Astrom SU, Cline TW and Rine J (2003) The Drosophila melanogaster sir2+ gene is nonessential and has only minor effects on position-effect variegation. Genetics 163, 931-937 https://doi.org/10.1093/genetics/163.3.931
  32. Yamashita S, Ogawa K, Ikei T, Udono M, Fujiki T and Katakura Y (2012) SIRT1 prevents replicative senescence of normal human umbilical cord fibroblast through potentiating the transcription of human telomerase reverse transcriptase gene. Biochem Biophys Res Commun 417, 630-634 https://doi.org/10.1016/j.bbrc.2011.12.021
  33. Watroba M, Dudek I, Skoda M, Stangret A, Rzodkiewicz P and Szukiewicz D (2017) Sirtuins, epigenetics and longevity. Ageing Res Rev 40, 11-19 https://doi.org/10.1016/j.arr.2017.08.001
  34. Jeong J, Juhn K, Lee H et al (2007) SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp Mol Med 39, 8-13 https://doi.org/10.1038/emm.2007.2
  35. Yuan Z and Seto E (2007) A functional link between SIRT1 deacetylase and NBS1 in DNA damage response. Cell Cycle 6, 2869-2871 https://doi.org/10.4161/cc.6.23.5026
  36. Oberdoerffer P, Michan S, McVay M et al (2008) SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135, 907-918 https://doi.org/10.1016/j.cell.2008.10.025
  37. Michishita E, McCord RA, Berber E et al (2008) SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452, 492-496 https://doi.org/10.1038/nature06736
  38. Jeong SM, Xiao C, Finley LW et al (2013) SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 23, 450-463 https://doi.org/10.1016/j.ccr.2013.02.024
  39. Brunet A, Sweeney LB, Sturgill JF et al (2004) Stressdependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011-2015 https://doi.org/10.1126/science.1094637
  40. Giannakou ME and Partridge L (2004) The interaction between FOXO and SIRT1: tipping the balance towards survival. Trends Cell Biol 14, 408-412 https://doi.org/10.1016/j.tcb.2004.07.006
  41. Luo J, Nikolaev AY, Imai S et al (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107, 137-148 https://doi.org/10.1016/S0092-8674(01)00524-4
  42. Langley E, Pearson M, Faretta M et al (2002) Human SIR2 deacetylates p53 and antagonizes PML/p53- induced cellular senescence. EMBO J 21, 2383-2396 https://doi.org/10.1093/emboj/21.10.2383
  43. Kawahara TL, Michishita E, Adler AS et al (2009) SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaBdependent gene expression and organismal life span. Cell 136, 62-74 https://doi.org/10.1016/j.cell.2008.10.052
  44. Xu Z, Zhang L, Fei X, Yi X, Li W and Wang Q (2014) The miR-29b-Sirt1 axis regulates self-renewal of mouse embryonic stem cells in response to reactive oxygen species. Cell Signal 26, 1500-1505 https://doi.org/10.1016/j.cellsig.2014.03.010
  45. Saunders LR, Sharma AD, Tawney J et al (2010) miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging (Albany NY) 2, 415-431 https://doi.org/10.18632/aging.100176
  46. Rimmele P, Bigarella CL, Liang R et al (2014) Aging-like phenotype and defective lineage specification in SIRT1-deleted hematopoietic stem and progenitor cells. Stem Cell Reports 3, 44-59 https://doi.org/10.1016/j.stemcr.2014.04.015
  47. Chen J, Xavier S, Moskowitz-Kassai E et al (2012) Cathepsin cleavage of sirtuin 1 in endothelial progenitor cells mediates stress-induced premature senescence. Am J Pathol 180, 973-983 https://doi.org/10.1016/j.ajpath.2011.11.033
  48. Yuan HF, Zhai C, Yan XL et al (2012) SIRT1 is required for long-term growth of human mesenchymal stem cells. J Mol Med (Berl) 90, 389-400 https://doi.org/10.1007/s00109-011-0825-4
  49. Denu RA (2017) SIRT3 Enhances Mesenchymal Stem Cell Longevity and Differentiation. Oxid Med Cell Longev 2017, 5841716
  50. Tissenbaum HA and Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227-230 https://doi.org/10.1038/35065638
  51. Kanfi Y, Naiman S, Amir G et al (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483, 218-221 https://doi.org/10.1038/nature10815
  52. Watroba M and Szukiewicz D (2016) The role of sirtuins in aging and age-related diseases. Adv Med Sci 61, 52-62 https://doi.org/10.1016/j.advms.2015.09.003
  53. Viswanathan M, Kim SK, Berdichevsky A and Guarente L (2005) A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell 9, 605-615 https://doi.org/10.1016/j.devcel.2005.09.017
  54. Howitz KT, Bitterman KJ, Cohen HY et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191-196 https://doi.org/10.1038/nature01960
  55. Wang Y and Tissenbaum HA (2006) Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech Ageing Dev 127, 48-56 https://doi.org/10.1016/j.mad.2005.09.005
  56. Banerjee KK, Ayyub C, Ali SZ, Mandot V, Prasad NG and Kolthur-Seetharam U (2012) dSir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner. Cell Rep 2, 1485-1491 https://doi.org/10.1016/j.celrep.2012.11.013
  57. Satoh A, Brace CS, Rensing N et al (2013) Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab 18, 416-430 https://doi.org/10.1016/j.cmet.2013.07.013
  58. Vakhrusheva O, Smolka C, Gajawada P et al (2008) Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 102, 703-710 https://doi.org/10.1161/CIRCRESAHA.107.164558
  59. Rose G, Dato S, Altomare K et al (2003) Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol 38, 1065-1070 https://doi.org/10.1016/S0531-5565(03)00209-2
  60. Berdichevsky A, Viswanathan M, Horvitz HR and Guarente L (2006) C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 125, 1165-1177 https://doi.org/10.1016/j.cell.2006.04.036
  61. Heidler T, Hartwig K, Daniel H and Wenzel U (2010) Caenorhabditis elegans lifespan extension caused by treatment with an orally active ROS-generator is dependent on DAF-16 and SIR-2.1. Biogerontology 11, 183-195 https://doi.org/10.1007/s10522-009-9239-x
  62. Banerjee KK, Ayyub C, Sengupta S and Kolthur-Seetharam U (2012) dSir2 deficiency in the fatbody, but not muscles, affects systemic insulin signaling, fat mobilization and starvation survival in flies. Aging (Albany NY) 4, 206-223 https://doi.org/10.18632/aging.100435
  63. Liang F, Kume S and Koya D (2009) SIRT1 and insulin resistance. Nat Rev Endocrinol 5, 367-373 https://doi.org/10.1038/nrendo.2009.101
  64. Zhang J (2007) The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. J Biol Chem 282, 34356-34364 https://doi.org/10.1074/jbc.M706644200
  65. Curtis R, O'Connor G and DiStefano PS (2006) Aging networks in Caenorhabditis elegans: AMP-activated protein kinase (aak-2) links multiple aging and metabolism pathways. Aging Cell 5, 119-126 https://doi.org/10.1111/j.1474-9726.2006.00205.x
  66. Price NL, Gomes AP, Ling AJ et al (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15, 675-690 https://doi.org/10.1016/j.cmet.2012.04.003
  67. Wang Y, Oh SW, Deplancke B, Luo J, Walhout AJ and Tissenbaum HA (2006) C. elegans 14-3-3 proteins regulate life span and interact with SIR-2.1 and DAF-16/FOXO. Mech Ageing Dev 127, 741-747 https://doi.org/10.1016/j.mad.2006.05.005
  68. Berdichevsky A, Nedelcu S, Boulias K, Bishop NA, Guarente L and Horvitz HR (2010) 3-Ketoacyl thiolase delays aging of Caenorhabditis elegans and is required for lifespan extension mediated by sir-2.1. Proc Natl Acad Sci U S A 107, 18927-18932 https://doi.org/10.1073/pnas.1013854107
  69. Rizki G, Iwata TN, Li J et al (2011) The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO. PLoS Genet 7, e1002235 https://doi.org/10.1371/journal.pgen.1002235
  70. Mouchiroud L, Houtkooper RH, Moullan N et al (2013) The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. Cell 154, 430-441 https://doi.org/10.1016/j.cell.2013.06.016
  71. Dang W (2012) The controversial world of sirtuins. Drug Discov Today Technol 12, e9-e17 https://doi.org/10.1016/j.ddtec.2012.08.003
  72. Naiman S and Cohen HY (2012) The contentious history of sirtuin debates. Rambam Maimonides Med J 3, e0022
  73. Burnett C, Valentini S, Cabreiro F et al (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477, 482-485 https://doi.org/10.1038/nature10296
  74. Viswanathan M and Guarente L (2011) Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature 477, E1-2 https://doi.org/10.1038/nature10440
  75. Whitaker R, Faulkner S, Miyokawa R et al (2013) Increased expression of Drosophila Sir2 extends life span in a dose-dependent manner. Aging (Albany NY) 5, 682-691 https://doi.org/10.18632/aging.100599
  76. Bauer JH, Morris SN, Chang C, Flatt T, Wood JG and Helfand SL (2009) dSir2 and Dmp53 interact to mediate aspects of CR-dependent lifespan extension in D. melanogaster. Aging (Albany NY) 1, 38-48 https://doi.org/10.18632/aging.100001
  77. Alcendor RR, Gao S, Zhai P et al (2007) Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 100, 1512-1521 https://doi.org/10.1161/01.RES.0000267723.65696.4a
  78. Lee SH and Min KJ (2013) Caloric restriction and its mimetics. BMB Rep 46, 181-187 https://doi.org/10.5483/BMBRep.2013.46.4.033
  79. Canto C and Auwerx J (2009) Caloric restriction, SIRT1 and longevity. Trends Endocrinol Metab 20, 325-331 https://doi.org/10.1016/j.tem.2009.03.008
  80. Sinclair DA (2005) Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 126, 987-1002 https://doi.org/10.1016/j.mad.2005.03.019
  81. Cohen HY, Miller C, Bitterman KJ et al (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390-392 https://doi.org/10.1126/science.1099196
  82. Rogina B, Helfand SL and Frankel S (2002) Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science 298, 1745 https://doi.org/10.1126/science.1078986
  83. Chen D, Bruno J, Easlon E et al (2008) Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev 22, 1753-1757 https://doi.org/10.1101/gad.1650608
  84. Firestein R, Blander G, Michan S et al (2008) The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One 3, e2020 https://doi.org/10.1371/journal.pone.0002020
  85. Kim HS, Xiao C, Wang RH et al (2010) Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab 12, 224-236 https://doi.org/10.1016/j.cmet.2010.06.009
  86. Palacios OM, Carmona JJ, Michan S et al (2009) Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging (Albany NY) 1, 771-783 https://doi.org/10.18632/aging.100075
  87. Someya S, Yu W, Hallows WC et al (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143, 802-812 https://doi.org/10.1016/j.cell.2010.10.002
  88. Lin SJ, Defossez PA and Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126-2128 https://doi.org/10.1126/science.289.5487.2126
  89. Anderson RM, Bitterman KJ, Wood JG, Medvedik O and Sinclair DA (2003) Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423, 181-185 https://doi.org/10.1038/nature01578
  90. Hansen M, Taubert S, Crawford D, Libina N, Lee SJ and Kenyon C (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6, 95-110 https://doi.org/10.1111/j.1474-9726.2006.00267.x
  91. Boily G, Seifert EL, Bevilacqua L et al (2008) SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One 3, e1759 https://doi.org/10.1371/journal.pone.0001759
  92. Qiu X, Brown K, Hirschey MD, Verdin E and Chen D (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12, 662-667 https://doi.org/10.1016/j.cmet.2010.11.015
  93. Kaeberlein M, Kirkland KT, Fields S and Kennedy BK (2004) Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2, E296 https://doi.org/10.1371/journal.pbio.0020296
  94. Smith DL Jr, McClure JM, Matecic M and Smith JS (2007) Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell 6, 649-662 https://doi.org/10.1111/j.1474-9726.2007.00326.x
  95. Fabrizio P, Gattazzo C, Battistella L et al (2005) Sir2 blocks extreme life-span extension. Cell 123, 655-667 https://doi.org/10.1016/j.cell.2005.08.042
  96. Tsuchiya M, Dang N, Kerr EO et al (2006) Sirtuinindependent effects of nicotinamide on lifespan extension from calorie restriction in yeast. Aging Cell 5, 505-514 https://doi.org/10.1111/j.1474-9726.2006.00240.x
  97. Kaeberlein TL, Smith ED, Tsuchiya M et al (2006) Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 5, 487-494 https://doi.org/10.1111/j.1474-9726.2006.00238.x
  98. Lee GD, Wilson MA, Zhu M et al (2006) Dietary deprivation extends lifespan in Caenorhabditis elegans. Aging Cell 5, 515-524 https://doi.org/10.1111/j.1474-9726.2006.00241.x
  99. Greer EL and Brunet A (2009) Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8, 113-127 https://doi.org/10.1111/j.1474-9726.2009.00459.x
  100. Guarente L (2005) Calorie restriction and SIR2 genes--towards a mechanism. Mech Ageing Dev 126, 923-928 https://doi.org/10.1016/j.mad.2005.03.013
  101. Lamming DW, Latorre-Esteves M, Medvedik O et al (2005) HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 309, 1861-1864 https://doi.org/10.1126/science.1113611
  102. Wood JG, Rogina B, Lavu S et al (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686-689 https://doi.org/10.1038/nature02789
  103. Hubbard BP, Gomes AP, Dai H et al (2012) Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339, 1216-1219 https://doi.org/10.1126/science.1231097
  104. Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L and Cellerino A (2006) Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 16, 296-300 https://doi.org/10.1016/j.cub.2005.12.038
  105. Rascon B, Hubbard BP, Sinclair DA and Amdam GV (2012) The lifespan extension effects of resveratrol are conserved in the honey bee and may be driven by a mechanism related to caloric restriction. Aging (Albany NY) 4, 499-508 https://doi.org/10.18632/aging.100474
  106. Ota H, Eto M, Kano MR et al (2008) Cilostazol inhibits oxidative stress-induced premature senescence via upregulation of Sirt1 in human endothelial cells. Arterioscler Thromb Vasc Biol 28, 1634-1639 https://doi.org/10.1161/ATVBAHA.108.164368
  107. Jamal J, Mustafa MR and Wong PF (2014) Paeonol protects against premature senescence in endothelial cells by modulating Sirtuin 1 pathway. J Ethnopharmacol 154, 428-436 https://doi.org/10.1016/j.jep.2014.04.025
  108. Ota H, Eto M, Kano MR et al (2010) Induction of endothelial nitric oxide synthase, SIRT1, and catalase by statins inhibits endothelial senescence through the Akt pathway. Arterioscler Thromb Vasc Biol 30, 2205-2211 https://doi.org/10.1161/ATVBAHA.110.210500
  109. Suo R, Zhao ZZ, Tang ZH et al (2013) Hydrogen sulfide prevents H(2)O(2)-induced senescence in human umbilical vein endothelial cells through SIRT1 activation. Mol Med Rep 7, 1865-1870 https://doi.org/10.3892/mmr.2013.1417
  110. Lee MK, Choi YJ, Sung SH, Shin DI, Kim JW and Kim YC (1995) Antihepatotoxic activity of icariin, a major constituent of Epimedium koreanum. Planta Med 61, 523-526 https://doi.org/10.1055/s-2006-959362
  111. Lee YA, Cho EJ and Yokozawa T (2008) Protective effect of persimmon (Diospyros kaki) peel proanthocyanidin against oxidative damage under H2O2-induced cellular senescence. Biol Pharm Bull 31, 1265-1269 https://doi.org/10.1248/bpb.31.1265
  112. Ramis MR, Esteban S, Miralles A, Tan DX and Reiter RJ (2015) Caloric restriction, resveratrol and melatonin: Role of SIRT1 and implications for aging and related-diseases. Mech Ageing Dev 146-148:28-41 https://doi.org/10.1016/j.mad.2015.03.008
  113. Sun Q, Jia N, Wang W, Jin H, Xu J and Hu H (2014) Activation of SIRT1 by curcumin blocks the neurotoxicity of amyloid-beta25-35 in rat cortical neurons. Biochem Biophys Res Commun 448, 89-94 https://doi.org/10.1016/j.bbrc.2014.04.066
  114. Kayashima Y, Katayanagi Y, Tanaka K, Fukutomi R, Hiramoto S and Imai S (2017) Alkylresorcinols activate SIRT1 and delay ageing in Drosophila melanogaster. Sci Rep 7, 43679 https://doi.org/10.1038/srep43679
  115. Lee KS, Lee BS, Semnani S et al (2010) Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster. Rejuvenation Res 13, 561-570 https://doi.org/10.1089/rej.2010.1031
  116. Bonkowski MS and Sinclair DA (2016) Slowing ageing by design: the rise of NAD(+) and sirtuin-activating compounds. Nat Rev Mol Cell Biol 17, 679-690 https://doi.org/10.1038/nrm.2016.93
  117. Hubbard BP and Sinclair DA (2014) Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci 35, 146-154 https://doi.org/10.1016/j.tips.2013.12.004
  118. Milne JC, Lambert PD, Schenk S et al (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712-716 https://doi.org/10.1038/nature06261
  119. Minor RK, Baur JA, Gomes AP et al (2011) SRT1720 improves survival and healthspan of obese mice. Sci Rep 1, 70 https://doi.org/10.1038/srep00070
  120. Mercken EM, Mitchell SJ, Martin-Montalvo A et al (2014) SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell 13, 787-796 https://doi.org/10.1111/acel.12220
  121. Bemis JE, Vu CB, Xie R et al (2009) Discovery of oxazolo[4,5-b]pyridines and related heterocyclic analogs as novel SIRT1 activators. Bioorg Med Chem Lett 19, 2350-2353 https://doi.org/10.1016/j.bmcl.2008.11.106
  122. Vu CB, Bemis JE, Disch JS et al (2009) Discovery of imidazo[1,2-b]thiazole derivatives as novel SIRT1 activators. J Med Chem 52, 1275-1283 https://doi.org/10.1021/jm8012954
  123. Mai A, Valente S, Meade S et al (2009) Study of 1,4-dihydropyridine structural scaffold: discovery of novel sirtuin activators and inhibitors. J Med Chem 52, 5496-5504 https://doi.org/10.1021/jm9008289
  124. Sauve AA, Moir RD, Schramm VL and Willis IM (2005) Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition. Mol Cell 17, 595-601 https://doi.org/10.1016/j.molcel.2004.12.032
  125. Pacholec M, Bleasdale JE, Chrunyk B et al (2010) SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 285, 8340-8351 https://doi.org/10.1074/jbc.M109.088682
  126. Borra MT, Smith BC and Denu JM (2005) Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280, 17187-17195 https://doi.org/10.1074/jbc.M501250200
  127. Kaeberlein M, McDonagh T, Heltweg B et al (2005) Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 280, 17038-17045 https://doi.org/10.1074/jbc.M500655200
  128. Chung JH (2012) Using PDE inhibitors to harness the benefits of calorie restriction: lessons from resveratrol. Aging (Albany NY) 4, 144-145 https://doi.org/10.18632/aging.100442
  129. Bass TM, Weinkove D, Houthoofd K, Gems D and Partridge L (2007) Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev 128, 546-552 https://doi.org/10.1016/j.mad.2007.07.007
  130. Hashimoto T, Horikawa M, Nomura T and Sakamoto K (2010) Nicotinamide adenine dinucleotide extends the lifespan of Caenorhabditis elegans mediated by sir-2.1 and daf-16. Biogerontology 11, 31-43 https://doi.org/10.1007/s10522-009-9225-3
  131. Scheibye-Knudsen M, Mitchell SJ, Fang EF et al (2014) A high-fat diet and NAD(+) activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metab 20, 840-855 https://doi.org/10.1016/j.cmet.2014.10.005
  132. Zhang H, Ryu D, Wu Y et al (2016) NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436-1443 https://doi.org/10.1126/science.aaf2693
  133. Yoshino J, Mills KF, Yoon MJ and Imai S (2011) Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab 14, 528-536 https://doi.org/10.1016/j.cmet.2011.08.014
  134. Canto C, Houtkooper RH, Pirinen E et al (2012) The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 15, 838-847 https://doi.org/10.1016/j.cmet.2012.04.022
  135. Schmeisser K, Mansfeld J, Kuhlow D et al (2013) Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. Nat Chem Biol 9, 693-700 https://doi.org/10.1038/nchembio.1352
  136. Rongvaux A, Shea RJ, Mulks MH et al (2002) Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur J Immunol 32, 3225-3234 https://doi.org/10.1002/1521-4141(200211)32:11<3225::AID-IMMU3225>3.0.CO;2-L
  137. Revollo JR, Grimm AA and Imai S (2004) The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 279, 50754-50763 https://doi.org/10.1074/jbc.M408388200
  138. Balan V, Miller GS, Kaplun L et al (2008) Life span extension and neuronal cell protection by Drosophila nicotinamidase. J Biol Chem 283, 27810-27819 https://doi.org/10.1074/jbc.M804681200
  139. Gomes AP, Price NL, Ling AJ et al (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624-1638 https://doi.org/10.1016/j.cell.2013.11.037
  140. Barbosa MT, Soares SM, Novak CM et al (2007) The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. FASEB J 21, 3629-3639 https://doi.org/10.1096/fj.07-8290com
  141. Canto C, Jiang LQ, Deshmukh AS et al (2010) Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 11, 213-219 https://doi.org/10.1016/j.cmet.2010.02.006
  142. Fulco M, Cen Y, Zhao P et al (2008) Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 14, 661-673 https://doi.org/10.1016/j.devcel.2008.02.004
  143. Canto C, Gerhart-Hines Z, Feige JN et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060 https://doi.org/10.1038/nature07813
  144. Moroz N, Carmona JJ, Anderson E, Hart AC, Sinclair DA and Blackwell TK (2014) Dietary restriction involves NAD(+) -dependent mechanisms and a shift toward oxidative metabolism. Aging Cell 13, 1075-1085 https://doi.org/10.1111/acel.12273
  145. Lin SJ, Ford E, Haigis M, Liszt G and Guarente L (2004) Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 18, 12-16 https://doi.org/10.1101/gad.1164804