DOI QR코드

DOI QR Code

Senotherapeutics: emerging strategy for healthy aging and age-related disease

  • Kim, Eok-Cheon (Department of Biochemistry and Molecular Biology, Smart-aging Convergence Research Center, College of Medicine, Yeungnam University) ;
  • Kim, Jae-Ryong (Department of Biochemistry and Molecular Biology, Smart-aging Convergence Research Center, College of Medicine, Yeungnam University)
  • Received : 2018.10.19
  • Published : 2019.01.31

Abstract

Cellular senescence (CS) is one of hallmarks of aging and accumulation of senescent cells (SCs) with age contributes to tissue or organismal aging, as well as the pathophysiologies of diverse age-related diseases (ARDs). Genetic ablation of SCs in tissues lengthened health span and reduced the risk of age-related pathologies in a mouse model, suggesting a direct link between SCs, longevity, and ARDs. Therefore, senotherapeutics, medicines targeting SCs, might be an emerging strategy for the extension of health span, and prevention or treatment of ARDs. Senotherapeutics are classified as senolytics which kills SCs selectively; senomorphics which modulate functions and morphology of SCs to those of young cells, or delays the progression of young cells to SCs in tissues; and immune-system mediators of the clearance of SCs. Some senolytics and senomorphics have been proven to markedly prevent or treat ARDs in animal models. This review will present the current status of the development of senotherapeutics, in relation to aging itself and ARDs. Finally, future directions and opportunities for senotherapeutics use will discussed. This knowledge will provide information that can be used to develop novel senotherapeutics for health span and ARDs.

Keywords

References

  1. Hayflick L and Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25, 585-621 https://doi.org/10.1016/0014-4827(61)90192-6
  2. Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75, 685-705 https://doi.org/10.1146/annurev-physiol-030212-183653
  3. Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C and von Zglinicki T (2009) DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8, 311-323 https://doi.org/10.1111/j.1474-9726.2009.00481.x
  4. He S and Sharpless NE (2017) Senescence in Health and Disease. Cell 169, 1000-1011 https://doi.org/10.1016/j.cell.2017.05.015
  5. Leong I (2018) Sustained caloric restriction in health. Nat Rev Endocrinol 14, 322 https://doi.org/10.1038/s41574-018-0008-2
  6. Redman LM, Smith SR, Burton JH, Martin CK, Il'yasova D and Ravussin E (2018) Metabolic Slowing and Reduced Oxidative Damage with Sustained Caloric Restriction Support the Rate of Living and Oxidative Damage Theories of Aging. Cell Metab 27, 805-815 e804 https://doi.org/10.1016/j.cmet.2018.02.019
  7. Roth GS and Ingram DK (2016) Manipulation of health span and function by dietary caloric restriction mimetics. Ann N Y Acad Sci 1363, 5-10 https://doi.org/10.1111/nyas.12834
  8. Wei M, Brandhorst S, Shelehchi M et al (2017) Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci Transl Med 9, 377
  9. Mitchell SJ, Martin-Montalvo A, Mercken EM et al (2014) The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep 6, 836-843 https://doi.org/10.1016/j.celrep.2014.01.031
  10. Burkewitz K, Zhang Y and Mair WB (2014) AMPK at the nexus of energetics and aging. Cell Metab 20, 10-25 https://doi.org/10.1016/j.cmet.2014.03.002
  11. Harrison DE, Strong R, Sharp ZD et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392-395 https://doi.org/10.1038/nature08221
  12. Nakamura S and Yoshimori T (2018) Autophagy and Longevity. Mol Cells 41, 65-72 https://doi.org/10.14348/MOLCELLS.2018.2333
  13. Moskalev A, Chernyagina E, Kudryavtseva A and Shaposhnikov M (2017) Geroprotectors: A Unified Concept and Screening Approaches. Aging Dis 8, 354-363 https://doi.org/10.14336/AD.2016.1022
  14. Conese M, Carbone A, Beccia E and Angiolillo A (2017) The Fountain of Youth: A Tale of Parabiosis, Stem Cells, and Rejuvenation. Open Med (Wars) 12, 376-383 https://doi.org/10.1515/med-2017-0053
  15. Villeda SA, Plambeck KE, Middeldorp J et al (2014) Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med 20, 659-663 https://doi.org/10.1038/nm.3569
  16. Castellano JM, Mosher KI, Abbey RJ et al (2017) Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 544, 488-492 https://doi.org/10.1038/nature22067
  17. Lopez-Otin C, Blasco MA, Partridge L, Serrano M and Kroemer G (2013) The hallmarks of aging. Cell 153, 1194-1217 https://doi.org/10.1016/j.cell.2013.05.039
  18. Munoz-Espin D and Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15, 482-496 https://doi.org/10.1038/nrm3823
  19. Baker DJ, Wijshake T, Tchkonia T et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageingassociated disorders. Nature 479, 232-236 https://doi.org/10.1038/nature10600
  20. Baker DJ, Childs BG, Durik M et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530, 184-189 https://doi.org/10.1038/nature16932
  21. Xu M, Palmer AK, Ding H et al (2015) Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife 4, e12997 https://doi.org/10.7554/eLife.12997
  22. Ogrodnik M, Miwa S, Tchkonia T et al (2017) Cellular senescence drives age-dependent hepatic steatosis. Nat Commun 8, 15691 https://doi.org/10.1038/ncomms15691
  23. Farr JN, Xu M, Weivoda MM et al (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23, 1072-1079 https://doi.org/10.1038/nm.4385
  24. Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM and Baker DJ (2018) Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578-582 https://doi.org/10.1038/s41586-018-0543-y
  25. Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J and van Deursen JM (2016) Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472-477 https://doi.org/10.1126/science.aaf6659
  26. Jeon OH, Kim C, Laberge RM et al (2017) Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 23, 775-781 https://doi.org/10.1038/nm.4324
  27. Xu M, Bradley EW, Weivoda MM et al (2017) Transplanted Senescent Cells Induce an Osteoarthritis-Like Condition in Mice. J Gerontol A Biol Sci Med Sci 72, 780-785
  28. Xu M, Pirtskhalava T, Farr JN et al (2018) Senolytics improve physical function and increase lifespan in old age. Nat Med 24, 1246-1256 https://doi.org/10.1038/s41591-018-0092-9
  29. Zhu Y, Tchkonia T, Pirtskhalava T et al (2015) The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644-658 https://doi.org/10.1111/acel.12344
  30. Niedernhofer LJ and Robbins PD (2018) Senotherapeutics for healthy ageing. Nat Rev Drug Discov 17, 377 https://doi.org/10.1038/nrd.2018.44
  31. Roos CM, Zhang B, Palmer AK et al (2016) Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15, 973-977 https://doi.org/10.1111/acel.12458
  32. Schafer MJ, White TA, Iijima K et al (2017) Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 8, 14532 https://doi.org/10.1038/ncomms14532
  33. Chang J, Wang Y, Shao L et al (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22, 78-83 https://doi.org/10.1038/nm.4010
  34. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H et al (2016) Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428-435 https://doi.org/10.1111/acel.12445
  35. Yosef R, Pilpel N, Tokarsky-Amiel R et al (2016) Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun 7, 11190 https://doi.org/10.1038/ncomms11190
  36. Zhu Y, Doornebal EJ, Pirtskhalava T et al (2017) New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging (Albany NY) 9, 955-963 https://doi.org/10.18632/aging.101202
  37. Moncsek A, Al-Suraih MS, Trussoni CE et al (2018) Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2(-/-) ) mice. Hepatology 67, 247-259 https://doi.org/10.1002/hep.29464
  38. Fuhrmann-Stroissnigg H, Ling YY, Zhao J et al (2017) Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 8, 422 https://doi.org/10.1038/s41467-017-00314-z
  39. Wang Y, Chang J, Liu X et al (2016) Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging (Albany NY) 8, 2915-2926 https://doi.org/10.18632/aging.101100
  40. Hwang HV, Tran DT, Rebuffatti MN, Li CS and Knowlton AA (2018) Investigation of quercetin and hyperoside as senolytics in adult human endothelial cells. PLoS One 13, e0190374 https://doi.org/10.1371/journal.pone.0190374
  41. Samaraweera L, Adomako A, Rodriguez-Gabin A and McDaid HM (2017) A Novel Indication for Panobinostat as a Senolytic Drug in NSCLC and HNSCC. Sci Rep 7, 1900 https://doi.org/10.1038/s41598-017-01964-1
  42. Kim YH, Choi YW, Lee J, Soh EY, Kim JH and Park TJ (2017) Senescent tumor cells lead the collective invasion in thyroid cancer. Nat Commun 8, 15208 https://doi.org/10.1038/ncomms15208
  43. Milanovic M, Fan DNY, Belenki D et al (2018) Senescenceassociated reprogramming promotes cancer stemness. Nature 553, 96-100 https://doi.org/10.1038/nature25167
  44. Baar MP, Brandt RMC, Putavet DA et al (2017) Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell 169, 132-147.e116 https://doi.org/10.1016/j.cell.2017.02.031
  45. Liu P, Zhao H and Luo Y (2017) Anti-Aging Implications of Astragalus Membranaceus (Huangqi): A Well-Known Chinese Tonic. Aging Dis 8, 868-886 https://doi.org/10.14336/AD.2017.0816
  46. Hubbard BP and Sinclair DA (2014) Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci 35, 146-154 https://doi.org/10.1016/j.tips.2013.12.004
  47. Lamming DW, Ye L, Sabatini DM and Baur JA (2013) Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Invest 123, 980-989 https://doi.org/10.1172/JCI64099
  48. Si H and Liu D (2014) Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J Nutr Biochem 25, 581-591 https://doi.org/10.1016/j.jnutbio.2014.02.001
  49. Soto-Gamez A and Demaria M (2017) Therapeutic interventions for aging: the case of cellular senescence. Drug Discov Today 22, 786-795 https://doi.org/10.1016/j.drudis.2017.01.004
  50. Chondrogianni N, Voutetakis K, Kapetanou M et al (2015) Proteasome activation: An innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res Rev 23, 37-55 https://doi.org/10.1016/j.arr.2014.12.003
  51. Chung HY, Lee EK, Choi YJ et al (2011) Molecular inflammation as an underlying mechanism of the aging process and age-related diseases. J Dent Res 90, 830-840 https://doi.org/10.1177/0022034510387794
  52. Franceschi C, Garagnani P, Vitale G, Capri M and Salvioli S (2017) Inflammaging and 'Garb-aging'. Trends Endocrinol Metab 28, 199-212 https://doi.org/10.1016/j.tem.2016.09.005
  53. Tilstra JS, Clauson CL, Niedernhofer LJ and Robbins PD (2011) NF-kappaB in Aging and Disease. Aging Dis 2, 449-465
  54. Tilstra JS, Robinson AR, Wang J et al (2012) NF-kappaB inhibition delays DNA damage-induced senescence and aging in mice. J Clin Invest 122, 2601-2612 https://doi.org/10.1172/JCI45785
  55. Xu M, Tchkonia T, Ding H et al (2015) JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci U S A 112, E6301-6310 https://doi.org/10.1073/pnas.1515386112
  56. Kang HT, Park JT, Choi K et al (2017) Chemical screening identifies ATM as a target for alleviating senescence. Nat Chem Biol 13, 616-623 https://doi.org/10.1038/nchembio.2342
  57. Cao K, Blair CD, Faddah DA et al (2011) Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. J Clin Invest 121, 2833-2844 https://doi.org/10.1172/JCI43578
  58. Lee SJ, Jung YS, Yoon MH et al (2016) Interruption of progerin-lamin A/C binding ameliorates Hutchinson-Gilford progeria syndrome phenotype. J Clin Invest 126, 3879-3893 https://doi.org/10.1172/JCI84164
  59. Yang HH, Hwangbo K, Zheng MS et al (2014) Inhibitory effects of juglanin on cellular senescence in human dermal fibroblasts. J Nat Med 68, 473-480 https://doi.org/10.1007/s11418-014-0817-0
  60. Yang HH, Hwangbo K, Zheng MS et al (2014) Quercetin-3-O-beta-D-glucuronide isolated from Polygonum aviculare inhibits cellular senescence in human primary cells. Arch Pharm Res 37, 1219-1233 https://doi.org/10.1007/s12272-014-0344-2
  61. Yang HH, Hwangbo K, Zheng MS et al (2015) Inhibitory effects of (-)-loliolide on cellular senescence in human dermal fibroblasts. Arch Pharm Res 38, 876-884 https://doi.org/10.1007/s12272-014-0435-0
  62. Yang HH, Zhang H, Son JK and Kim JR (2015) Inhibitory effects of quercetagetin 3,4'-dimethyl ether purified from Inula japonica on cellular senescence in human umbilical vein endothelial cells. Arch Pharm Res 38, 1857-1864 https://doi.org/10.1007/s12272-015-0577-8
  63. Bae YU, Choi JH, Nagy A, Sung HK and Kim JR (2016) Antisenescence effect of mouse embryonic stem cell conditioned medium through a PDGF/FGF pathway. FASEB J 30, 1276-1286 https://doi.org/10.1096/fj.15-278846
  64. Bae YU, Son Y, Kim CH et al (2018) Embryonic stem cell-derived mmu-miR-291a-3p inhibits cellular senescence in human dermal fibroblasts through the TGF--receptor 2 pathway. J Gerontol A Biol Sci Med Sci [Epub ahead of print]
  65. Burton DGA and Stolzing A (2018) Cellular senescence: Immunosurveillance and future immunotherapy. Ageing Res Rev 43, 17-25 https://doi.org/10.1016/j.arr.2018.02.001
  66. Demaria M, Ohtani N, Youssef SA et al (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31, 722-733 https://doi.org/10.1016/j.devcel.2014.11.012
  67. Krizhanovsky V, Yon M, Dickins RA et al (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657-667 https://doi.org/10.1016/j.cell.2008.06.049
  68. Munoz-Espin D, Canamero M, Maraver A et al (2013) Programmed cell senescence during mammalian embryonic development. Cell 155, 1104-1118 https://doi.org/10.1016/j.cell.2013.10.019
  69. Sagiv A, Burton DG, Moshayev Z et al (2016) NKG2D ligands mediate immunosurveillance of senescent cells. Aging (Albany NY) 8, 328-344 https://doi.org/10.18632/aging.100897
  70. Kim KM, Noh JH, Bodogai M et al (2017) Identification of senescent cell surface targetable protein DPP4. Genes Dev 31, 1529-1534 https://doi.org/10.1101/gad.302570.117
  71. Kang TW, Yevsa T, Woller N et al (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547-551 https://doi.org/10.1038/nature10599
  72. van Deursen JM (2014) The role of senescent cells in ageing. Nature 509, 439-446 https://doi.org/10.1038/nature13193
  73. Childs BG, Durik M, Baker DJ and van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21, 1424-1435 https://doi.org/10.1038/nm.4000
  74. Kim TW, Kim HJ, Lee C et al (2008) Identification of replicative senescence-associated genes in human umbilical vein endothelial cells by an annealing control primer system. Exp Gerontol 43, 286-295 https://doi.org/10.1016/j.exger.2007.12.010
  75. Thapa RK, Nguyen HT, Jeong JH et al (2017) Progressive slowdown/prevention of cellular senescence by CD9-targeted delivery of rapamycin using lactose-wrapped calcium carbonate nanoparticles. Sci Rep 7, 43299 https://doi.org/10.1038/srep43299
  76. Nguyen HT, Thapa RK, Shin BS et al (2017) CD9 monoclonal antibody-conjugated PEGylated liposomes for targeted delivery of rapamycin in the treatment of cellular senescence. Nanotechnology 28, 095101 https://doi.org/10.1088/1361-6528/aa57b3