DOI QR코드

DOI QR Code

SEMISYMMETRIC PROPERTIES OF ALMOST COKӒHLER 3-MANIFOLDS

  • De, Uday Chand (Department of Pure Mathematics University of Calcutta) ;
  • Majhi, Pradip (Department of Pure Mathematics University of Calcutta) ;
  • Suh, Young Jin (Department of Mathematics Kyungpook National University)
  • Received : 2018.02.28
  • Accepted : 2018.06.21
  • Published : 2019.01.31

Abstract

In this paper it is proved that on an almost $coK{\ddot{a}}hler$ 3-manifold M, (i) M is h-semisymmetric, (ii) the curvature condition $Q{\cdot}R=0$ and (iii) M is $coK{\ddot{a}}hler$ are equivalent.

Keywords

References

  1. D. E. Blair, The theory of quasi-Sasakian structures, J. Differential Geometry 1 (1967), 331-345. https://doi.org/10.4310/jdg/1214428097
  2. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, second edition, Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, MA, 2010.
  3. B. Cappelletti-Montano, A. De Nicola, and I. Yudin, A survey on cosymplectic geometry, Rev. Math. Phys. 25 (2013), no. 10, 1343002, 55 pp. https://doi.org/10.1142/S0129055X13430022
  4. P. Dacko and Z. Olszak, On almost cosymplectic ($\mathit{k},{\mu},\mathit{v}$)-spaces, in PDEs, submanifolds and affne differential geometry, 211-220, Banach Center Publ., 69, Polish Acad. Sci. Inst. Math., Warsaw, 2005.
  5. K. Erken and C. Murathan, A class of 3-dimensional almost cosymplectic manifolds, Turkish J. Math. 37 (2013), no. 5, 884-894.
  6. S. I. Goldberg and K. Yano, Integrability of almost cosymplectic structures, Pacific J. Math. 31 (1969), 373-382. https://doi.org/10.2140/pjm.1969.31.373
  7. H. Li, Topology of co-symplectic/co-Kahler manifolds, Asian J. Math. 12 (2008), no. 4, 527-543. https://doi.org/10.4310/AJM.2008.v12.n4.a7
  8. Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), no. 2, 239-250. https://doi.org/10.2996/kmj/1138036371
  9. Z. Olszak, Locally conformal almost cosymplectic manifolds, Colloq. Math. 57 (1989), no. 1, 73-87. https://doi.org/10.4064/cm-57-1-73-87
  10. D. Perrone, Classification of homogeneous almost cosymplectic three-manifolds, Differential Geom. Appl. 30 (2012), no. 1, 49-58. https://doi.org/10.1016/j.difgeo.2011.10.003
  11. D. Perrone, Minimal Reeb vector fields on almost cosymplectic manifolds, Kodai Math. J. 36 (2013), no. 2, 258-274. https://doi.org/10.2996/kmj/1372337517
  12. Z. Szabo, Structure theorems on Riemannian spaces satisfying R(X, Y)${\cdot}$R = 0. I, The local version, J. Differential Geom. 17 (1982), no. 4, 531-582 (1983). https://doi.org/10.4310/jdg/1214437486
  13. P. Verheyen and L. Verstraelen, A new intrinsic characterization of hypercylinders in Euclidean spaces, Kyungpook Math. J. 25 (1985), no. 1, 1-4.
  14. Y. Wang, Almost co-Kahler manifolds satisfying some symmetry conditions, Turkish J. Math. 40 (2016), no. 4, 740-752. https://doi.org/10.3906/mat-1504-73
  15. Y. Wang, Ricci tensors on three-dimensional almost coKahler manifolds, Kodai Math. J. 39 (2016), no. 3, 469-483. https://doi.org/10.2996/kmj/1478073764
  16. Y. Wang, Semi-symmetric almost coKahler 3-manifolds, Internat. J. Geom. Methods in Modern Phys. 15 (2018), 1850031, 12pp. https://doi.org/10.1142/S0219887818500317
  17. A. Yildiz and U. C. De, A classification of ($k,{\mu}$)-contact metric manifolds, Commun. Korean Math. Soc. 27 (2012), no. 2, 327-339. https://doi.org/10.4134/CKMS.2012.27.2.327