DOI QR코드

DOI QR Code

A NOTE ON BOUNDARY BLOW-UP PROBLEM OF 𝚫u = up

  • Kim, Seick (Department of Mathematics Yonsei University)
  • Received : 2018.03.13
  • Accepted : 2018.05.29
  • Published : 2019.01.31

Abstract

Assume that ${\Omega}$ is a bounded domain in ${\mathbb{R}}^n$ with $n{\geq}2$. We study positive solutions to the problem, ${\Delta}u=u^p$ in ${\Omega}$, $u(x){\rightarrow}{\infty}$ as $x{\rightarrow}{\partial}{\Omega}$, where p > 1. Such solutions are called boundary blow-up solutions of ${\Delta}u=u^p$. We show that a boundary blow-up solution exists in any bounded domain if 1 < p < ${\frac{n}{n-2}}$. In particular, when n = 2, there exists a boundary blow-up solution to ${\Delta}u=u^p$ for all $p{\in}(1,{\infty})$. We also prove the uniqueness under the additional assumption that the domain satisfies the condition ${\partial}{\Omega}={\partial}{\bar{\Omega}}$.

Keywords

References

  1. H. Brezis and L. Veron, Removable singularities for some nonlinear elliptic equations, Arch. Rational Mech. Anal. 75 (1980/81), no. 1, 1-6. https://doi.org/10.1007/BF00284616
  2. E. B. Dynkin, Diffusions, superdiffusions and partial differential equations, American Mathematical Society Colloquium Publications, 50, American Mathematical Society, Providence, RI, 2002.
  3. L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.
  4. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, second edition, Grundlehren der Mathematischen Wissenschaften, 224, Springer-Verlag, Berlin, 1983.
  5. J. B. Keller, On solutions of ${\Delta}u\;=\;f(u)$, Comm. Pure Appl. Math. 10 (1957), 503-510. https://doi.org/10.1002/cpa.3160100402
  6. J.-F. Le Gall, A path-valued Markov process and its connections with partial differential equations, in First European Congress of Mathematics, Vol. II (Paris, 1992), 185-212, Progr. Math., 120, Birkhauser, Basel, 1994.
  7. C. Loewner and L. Nirenberg, Partial differential equations invariant under conformal or projective transformations, in Contributions to analysis (a collection of papers dedicated to Lipman Bers), 245-272, Academic Press, New York, 1974.
  8. M. Marcus and L. Veron, Uniqueness of solutions with blowup at the boundary for a class of nonlinear elliptic equations, C. R. Acad. Sci. Paris Ser. I Math. 317 (1993), no. 6, 559-563.
  9. M. Marcus and L. Veron, Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincare Anal. Non Lineaire 14 (1997), no. 2, 237-274. https://doi.org/10.1016/S0294-1449(97)80146-1
  10. J. Matero, Boundary-blow up problems in a fractal domain, Z. Anal. Anwendungen 15 (1996), no. 2, 419-444. https://doi.org/10.4171/ZAA/708
  11. R. Osserman, On the inequality ${\Delta}u\;\geq\;f(u)$, Pacific J. Math. 7 (1957), 1641-1647. https://doi.org/10.2140/pjm.1957.7.1641
  12. M. V. Safonov, On the uniqueness of blowup solutions for semilinear elliptic equations, Preprint.
  13. L. Veron, Solutions singulieres d'equations elliptiques semilineaires, C. R. Acad. Sci. Paris Ser. A-B 288 (1979), no. 18, A867-A869.