DOI QR코드

DOI QR Code

Characteristics of Bacterial Communities in Biological Filters of Full-Scale Drinking Water Treatment Plants

  • Received : 2018.08.01
  • Accepted : 2018.10.21
  • Published : 2019.01.28

Abstract

The taxonomic and functional characteristics of bacterial communities in the pre-chlorinated rapid filters and ozonated biological activated carbon (BAC) filters were compared using Illumina MiSeq sequencing of the 16S rRNA gene and community-level physiological profiling (CLPP) based on sole-carbon-source utilization patterns. Both the rapid filters and BAC filters were dominated by Rhizobiales within ${\alpha}-proteobacteria$, but other abundant orders and genera were significantly different in both types of filter. Firmicutes were abundant only in the intermediate chlorinated rapid filter, while Acidobacteria were abundant only in the BAC filters. Bacterial communities in the rapid filter showed high utilization of carbohydrates, while those in the BAC filters showed high utilization of polymers and carboxylic acids. These different characteristics of the bacterial communities could be related to the different substrates in the influents, filling materials, and residual disinfectants. Chlorination and ozonation inactivated the existing bacteria in the influent and formed different bacterial communities, which could be resistant to the oxidants and effectively utilize different substrates produced by the oxidant, including Phreatobacter in the rapid filters and Hyphomicrobium in the BAC filters. Bradyrhizobium and Leptothrix, which could utilize compounds adsorbed on the GAC, were abundant in the BAC filters. Ozonation increased taxonomic diversity but decreased functional diversity of the bacterial communities in the BAC filters. This study provides some new insights into the effects of oxidation processes and filling materials on the bacterial community structure in the biological filters of drinking water treatment plants.

Keywords

References

  1. Urfer D, Huck PM, Booth SDJ, Coffey BM. 1997. Biological filtration for BOM and particle removal: a critical review. J. Am. Water Works Assoc. 89: 83-98. https://doi.org/10.1002/j.1551-8833.1997.tb08342.x
  2. Zhu IX, Getting T, Bruce D. 2010. Review of biologically active filters in drinking water applications. J. Am. Water Works Assoc. 102: 67-77.
  3. Dussert BW, Van Stone GR. 1994. The biological activated carbon process for water purification. Water Eng. Manage. 141: 22-24.
  4. C hien CC, Kao CM, Chen CW, Dong CD, Wu CY. 2008. Application of biofiltration system on AOC removal: column and field studies. Chemosphere 71: 1786-1793. https://doi.org/10.1016/j.chemosphere.2007.12.005
  5. Liu W, Wu H, Wang Z, Ong SL, Hu JY, Ng WJ. 2002. Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system. Water Res. 36: 891-898. https://doi.org/10.1016/S0043-1354(01)00296-2
  6. Ramseier MK, Peter A, Traber J, von Gunten U. 2011. Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate. Water Res. 45: 2002-2010. https://doi.org/10.1016/j.watres.2010.12.002
  7. Zhao X, Hu HY, Yu T, Su C, Jiang H, Liu S. 2014. Effect of different molecular weight organic components on the increase of microbial growth potential of secondary effluent by ozonation. J. Environ. Sci. 26: 2190-2197. https://doi.org/10.1016/j.jes.2014.09.001
  8. Siddiqui MS, Amy GL, Murphy BD. 1997. Ozone enhanced removal of natural organic matter from drinking water sources. Water Res. 31: 3098-3106. https://doi.org/10.1016/S0043-1354(97)00130-9
  9. Pham ND, Lee EH, Chae SH, Cho Y, Shin H, Son A. 2016. Bacterial community structure shifted by geosmin in granular activated carbon system of water treatment plants. J. Microbiol. Biotechnol. 26: 99-109. https://doi.org/10.4014/jmb.1506.06033
  10. Lautenschlager K, Hwang C, Ling F, Liu WT, Boon N, Koster O, et al. 2014. Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant. Water Res. 62: 40-52. https://doi.org/10.1016/j.watres.2014.05.035
  11. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. 2011. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev. 75: 14-49. https://doi.org/10.1128/MMBR.00028-10
  12. Tung HH, Xie YF. 2009. Association between haloacetic acid degradation and heterotrophic bacteria in water distribution systems. Water Res. 43: 971-978. https://doi.org/10.1016/j.watres.2008.11.041
  13. Swietlik J, Raczyk-Stanislawiak U, Nawrocki J. 2009. The influence of disinfection on aquatic biodegradable organic carbon formation. Water Res. 43: 463-473. https://doi.org/10.1016/j.watres.2008.10.021
  14. van der Kooij D, Hijnen WAM, Kruithof JC. 1989. The effects of ozonation, biological filtration and distribution on the concentration of easily assimilable organic carbon (AOC) in drinking water. Ozone Sci. Eng. 11: 297-311. https://doi.org/10.1080/01919518908552443
  15. Lechevallier MW, Becker WC, Schorr P, Lee RG. 1992. AOC reduction by biological active filtration. Revue des sciences de l'eau. 5: 113-142. https://doi.org/10.7202/705156ar
  16. Niemi RM, Heiskanen I, Heine R, Rapala J. 2009. Previously uncultured ${\beta}$-Proteobacteria dominate in biologically active granular activated carbon (BAC) filters. Water Res. 43: 5075-5086. https://doi.org/10.1016/j.watres.2009.08.037
  17. Li C, Ling F, Zhang M, Liu WT, Li Y, Liu W. 2017. Characterization of bacterial community dynamics in a full-scale drinking water treatment plant. J. Environ. Sci. 51: 21-30. https://doi.org/10.1016/j.jes.2016.05.042
  18. Lin W, Yu Z, Zhang H, Thompson IP. 2014. Diversity and dynamics of microbial communities at each step of treatment plant for potable water generation. Water Res. 52: 218-230. https://doi.org/10.1016/j.watres.2013.10.071
  19. Chao Y, Mao Y, Wang Z, Zhang T. 2015. Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing. Sci. Rep. 5: 10044-10057. https://doi.org/10.1038/srep10044
  20. Fykse EM, Aarskaug T, Madslien EH, Dybwad M. 2016. Microbial community structure in a full-scale anaerobic treatment plant during start-up and first year of operation revealed by high-throughput 16S rRNA gene amplicon sequencing. Bioresour. Technol. 222: 380-387. https://doi.org/10.1016/j.biortech.2016.09.118
  21. Xiang H, Lu X, Yin L, Yang F, Zhu G, Liu W. 2013. Microbial community characterization, activity analysis and purifying efficiency in a biofilter process. J. Environ. Sci. 25: 677-687. https://doi.org/10.1016/S1001-0742(12)60089-8
  22. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617. https://doi.org/10.1099/ijsem.0.001755
  23. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, et al. 2007 EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  24. Zhu L, Xiao Q, Shen Y, Li S. 2017. Microbial functional diversity responses to 2 years since biochar application in silt-loam soils on the Loess Plateau. Ecotoxicol. Environ. Saf. 144: 578-584. https://doi.org/10.1016/j.ecoenv.2017.06.075
  25. Garland JL, Mills AL. 1991. Classification and characterisation of heterotrophic microbial communities on the basis of pattern of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 57: 2351-2359. https://doi.org/10.1128/AEM.57.8.2351-2359.1991
  26. Insam H. 1997. A new set of substrates proposed for community characterization in environmental samples, pp. 259-260. In Insam H, Rangger A (eds.), Microbial Communities-Functional versus structural approaches. Springer-Verlag, Berlin.
  27. Gerrity D, Arnold M, Dickenson E, Moser D, Sackett JD, Wert EC. 2018. Microbial community characterization of ozone-biofiltration systems in drinking water and potable reuse applications. Water Res. 135: 207-219. https://doi.org/10.1016/j.watres.2018.02.023
  28. Feng S, Chen C, Wang QF, Zhang XJ, Yang ZY, Xie SG. 2013. Characterization of microbial communities in a granular activated carbon-sand dual media filter for drinking water treatment. Int. J. Environ. Sci. Technol. 10: 917-922. https://doi.org/10.1007/s13762-013-0188-1
  29. Oh S, Hammes F, Liu WT. 2018. Metagenomic characterization of biofilter microbial communities in a full-scale drinking water treatment plant. Water Res. 128: 278-285. https://doi.org/10.1016/j.watres.2017.10.054
  30. Williams KP, Gillespie JJ, Sobral BWS, Nordberg EK, Snyder EE, Shallom JM, et al. 2010. Phylogeny of gammaproteobacteria. J. Bacteriol. 192: 2305-2314. https://doi.org/10.1128/JB.01480-09
  31. Kim TG, Yun J, Hong SH, Cho KS. 2014. Effects of water temperature and backwashing on bacterial population and community in a biological activated carbon process at a water treatment plant. Appl. Microbiol. Biotechnol. 98: 1417-1427. https://doi.org/10.1007/s00253-013-5057-9
  32. Liao X, Chen C, Wang Z, Wan R, Chang CH, Zhang X, et al. 2013. Changes of biomass and bacterial communities in biological activated carbon filters for drinking water treatment. Process Biochem. 48: 312-316. https://doi.org/10.1016/j.procbio.2012.12.016
  33. Koch AL. 2001. Oligotrophs versus copiotrophs. BioEssays 23: 657-661. https://doi.org/10.1002/bies.1091
  34. Eilers K G, Lauber C L, Knight R, F ierer N. 2010. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol. Biochem. 42: 896-903. https://doi.org/10.1016/j.soilbio.2010.02.003
  35. Kurm V, van der Putten WH, de Boer W, Naus-Wiezer S, Gera Hol WH. 2017. Low abundant soil bacteria can be metabolically versatile and fast growing. Ecology 98: 555-564. https://doi.org/10.1002/ecy.1670
  36. Kwon S, Kim TS, Yu GH, Jung JH, Park HD. 2010. Bacterial community composition and diversity of a full-scale integrated fixed-film activated sludge system as investigated by pyrosequencing. J. Microbiol. Biotechnol. 20: 1717-1723. https://doi.org/10.4014/jmb.1007.07012
  37. Pang CM, Liu WT. 2007. Community structure analysis of reverse osmosis membrane biofilms and the significance of Rhizobiales bacteria in biofouling. Environ. Sci. Technol. 41: 4728-4734. https://doi.org/10.1021/es0701614
  38. Luo J, Liang H, Yan L, Ma J, Yang Y, Li G. 2013. Microbial community structures in a closed raw water distribution system biofilm as revealed by 454-pyrosequencing analysis and the effect of microbial biofilm communities on raw water quality. Bioresour. Technol. 148: 189-195. https://doi.org/10.1016/j.biortech.2013.08.109
  39. Wu Y, Zhu G, Lu X. 2013. Characteristics of DOM and removal of DBPs precursors across O3-BAC integrated treatment for the micro-polluted raw water of the huangpu river. Water(Switzerland) 5: 1472-1486. https://doi.org/10.3390/w5041472
  40. Yang BM, Liu JK, Chien CC, Surampalli RY, Kao CM. 2011. Variations in AOC and microbial diversity in an advanced water treatment plant. J. Hydrol. 409: 225-235. https://doi.org/10.1016/j.jhydrol.2011.08.022
  41. Park JW, Kim HC, Meyer AS, Kim S, Maeng SK. 2016. Influences of NOM composition and bacteriological characteristics on biological stability in a full-scale drinking water treatment plant. Chemosphere 160: 189-198. https://doi.org/10.1016/j.chemosphere.2016.06.079
  42. Huber SA, Balz A, Abert M, Pronk W. 2011. Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography - organic carbon detection - organic nitrogen detection (LC-OCD-OND). Water Res. 45: 879-885. https://doi.org/10.1016/j.watres.2010.09.023
  43. Rutlidge H, Andersen MS, Baker A, Chinu KJ, Cuthbert MO, Jex CN, et al. 2015. Organic characterisation of cave drip water by LC-OCD and fluorescence analysis. Geochimica et Cosmochimica Acta 166: 15-28. https://doi.org/10.1016/j.gca.2015.05.042
  44. Fang J, Yang X, Ma J, Shang C, Zhao Q. 2010. Characterization of algal organic matter and formation of DBPs from chlor(am)ination. Water Res. 44: 5897-5906. https://doi.org/10.1016/j.watres.2010.07.009
  45. Wang H, Liu D, Lu L, Zhao Z, Xu Y, Cui F. 2012. Degradation of algal organic matter using microbial fuel cells and its association with trihalomethane precursor removal. Bioresour. Technol. 116: 80-85. https://doi.org/10.1016/j.biortech.2012.04.021
  46. Li L, Gao N, Deng Y, Yao J, Zhang K. 2012. Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds. Water Res. 46: 1233-1240. https://doi.org/10.1016/j.watres.2011.12.026
  47. Aeppli J, Dyer-Smith P. 1996. Ozonation and granular activated carbon filtration: the solution to many problems. In Proceedings of the First Australian Conference of the International Ozone Association; 1996 Feb; Sydney.
  48. Ma D, Meng Y, Xia C, Gao B, Wang Y. 2015. Fractionation, characterization and C-, N-disinfection byproduct formation of soluble microbial products in MBR processes. Bioresour. Technol. 198: 380-387. https://doi.org/10.1016/j.biortech.2015.09.043
  49. Wang H, Zhu Y, Hu C, Hu X. 2015. Treatment of NOM fractions of reservoir sediments: effect of UV and chlorination on formation of DBPs. Sep. Purif. Technol. 154: 228-235. https://doi.org/10.1016/j.seppur.2015.09.031
  50. Sandhu HPS, Manthey FA, Simsek S. 2012. Ozone gas affects physical and chemical properties of wheat (Triticum aestivum L.) starch. Carbohydrate Polymers. 87: 1261-1268. https://doi.org/10.1016/j.carbpol.2011.09.003
  51. Moll DM, Summers RS, Breen A. 1998. Microbial characterization of biological filtration used for drinking water treatment. Appl. Environ. Microbiol. 64: 2755-2759. https://doi.org/10.1128/AEM.64.7.2755-2759.1998
  52. Toth EM, Vengring A, Homonnay ZG, Keki Z, Sproer C, Borsodi AK, et al. 2014. Phreatobacter oligotrophus gen. nov., sp. nov., an alphaproteobacterium isolated from ultrapure water of the water purification system of a power plant. Int. J. Syst. Evol. Microbiol. 64: 839-845. https://doi.org/10.1099/ijs.0.053843-0
  53. Castro-Gutierrez VM, Rodriguez-Rodriguez CE, Vargas-Azofeifa I. 2012. Hydrocarbon degrading microflora in a tropical fuel-contaminated aquifer: Assessing the feasibility of PAH bioremediation. Int. J. Environ. Res. 6: 345-352.
  54. Nohynek LJ, Suhonen EL, Nurmiaho-Lassila, EL, Hantula J, Salkinoja-Salonen M. 1995. Description of four pentachlorophenoldegrading bacterial strains as Sphingomonas chlorophenolica sp. nov. Syst. Appl. Microbiol. 18: 527-538. https://doi.org/10.1016/S0723-2020(11)80413-3
  55. Saxena A, Anand S, Dua A, Sangwan N, Khan F, Lal R. 2013. Novosphingobium lindaniclasticum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. Int. J. Syst. Evol. Microbiol. 63: 2160-2167. https://doi.org/10.1099/ijs.0.045443-0
  56. Harder W, Attwood MM. 1975. Oxidation of organic C1 compounds by Hyphomicrobium spp. Antonie van Leeuwenhoek 41: 421-429. https://doi.org/10.1007/BF02565086
  57. Schreiber B, Brinkmann T, Schmalz V, Worch E. 2005. Adsorption of dissolved organic matter onto activated carbon - the influence of temperature, absorption wavelength, and molecular size. Water Res. 39: 3449-3456. https://doi.org/10.1016/j.watres.2005.05.050
  58. Kim TG, Moon KE, Cho KS. 2013. The presence of significant methylotrophic population in biological activated carbon of a full-scale drinking water plant. J. Microbiol. Biotechnol. 23: 1774-1778. https://doi.org/10.4014/jmb.1307.07048
  59. Mcbride MJ, Liu W, Lu X, Zhu Y, Zhang W. 2014. The Family Cytophagaceae, pp. 577-593. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds.), The Prokaryotes-Other Major Lineages of Bacteria and The Archaea, 4th Ed. Springer-Verlag, Berlin.
  60. Goher ME, Hassan AM, Abdel-Moniem IA, Fahmy AH, Abdo MH, El-sayed SM. 2015. Removal of aluminum, iron and manganese ions from industrial wastes using granular activated carbon and Amberlite IR-120H. Egypt. J. Aquat. Res. 41: 155-164. https://doi.org/10.1016/j.ejar.2015.04.002
  61. Lesueur D, Diem HG, Meyer JM. 1993. Iron requirement and siderophore production in Bradyrhizobium strains isolated from Acacia mangium. J. Appl. Bacteriol. 74: 675-682. https://doi.org/10.1111/j.1365-2672.1993.tb05202.x
  62. van Veen WL, Mulder EG, Deinema MH. 1978. The Sphaerotilus-Leptothrix group of bacteria. Microbiol. Rev. 42: 329-356. https://doi.org/10.1128/MMBR.42.2.329-356.1978
  63. Donlan RM. 2002. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8: 881-890. https://doi.org/10.3201/eid0809.020063
  64. Skorupska A, Janczarek M, Marczak M, Mazur A, Krol J. 2006. Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb. Cell Fact. 5: 7. https://doi.org/10.1186/1475-2859-5-7
  65. Stewart MH, Wolfe RL, Means EG. 1990. Assessment of the bacteriological activity associated with granular activated carbon treatment of drinking water. Appl. Environ. Microbiol. 56: 3822-3829. https://doi.org/10.1128/AEM.56.12.3822-3829.1990
  66. Chen Z, Yu T, Ngo HH, Lu Y, Li G, Wu Q, et al. 2018. Assimilable organic carbon (AOC) variation in reclaimed water: Insight on biological stability evaluation and control for sustainable water reuse. Bioresour. Technol. 254: 290-299. https://doi.org/10.1016/j.biortech.2018.01.111
  67. Korotta-Gamage SM, Sathasivan A. 2017. A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process. Chemosphere 167: 120-138. https://doi.org/10.1016/j.chemosphere.2016.09.097
  68. de Hoon MJ, Eichenberger P, Vitkup D. 2010. Hierarchical evolution of the bacterial sporulation network. Curr. Biol. 20: R735-R745. https://doi.org/10.1016/j.cub.2010.06.031
  69. Mi Z , Dai Y, X ie S , Chen C , Zhang X. 2015. Impact of disinfection on drinking water biofilm bacterial community. J. Environ. Sci. 37: 200-205. https://doi.org/10.1016/j.jes.2015.04.008
  70. Norton CD, LeChevallier MW. 2000. A pilot study of bacteriological population changes through potable water treatment and distribution. Appl. Environ. Microbiol. 66: 268-276. https://doi.org/10.1128/AEM.66.1.268-276.2000
  71. Furuhata K, Kato Y, Goto K, Saitou K, Sugiyama JI, Hara M, et al. 2007. Identification of yellow-pigmented bacteria isolated from hospital tap water in Japan and their chlorine resistance. Biocontrol. Sci. 12: 39-46. https://doi.org/10.4265/bio.12.39
  72. Mathieu L, Bouteleux C, Fass S, Angel E, Block JC. 2009. Reversible shift in the ${\alpha}$-, ${\beta}$- and ${\gamma}$-proteobacteria populations of drinking water biofilms during discontinuous chlorination. Water Res. 43: 3375-3386. https://doi.org/10.1016/j.watres.2009.05.005

Cited by

  1. Effectiveness of Bio-Activated Carbon Filtration and Ozonation on Control of Halo Acetic Acids Formation during Chlorination of Ganga River Water at Kanpur, India vol.42, pp.1, 2019, https://doi.org/10.1080/01919512.2019.1604205
  2. Comparison of disinfectants for drinking water: chlorine gas vs. on-site generated chlorine vol.27, pp.1, 2019, https://doi.org/10.4491/eer.2020.543