DOI QR코드

DOI QR Code

Recent Progresses in the Growth of Two-dimensional Transition Metal Dichalcogenides

  • Jung, Yeonjoon (Department of Material Science and Engineering, Yonsei University) ;
  • Ji, Eunji (Department of Material Science and Engineering, Yonsei University) ;
  • Capasso, Andrea (Department of Material Science and Engineering, Yonsei University) ;
  • Lee, Gwan-Hyoung (Department of Material Science and Engineering, Yonsei University)
  • Received : 2019.01.07
  • Accepted : 2019.01.21
  • Published : 2019.01.31

Abstract

Recently, considerable progress and many breakthroughs have been achieved in the growth of two-dimensional materials, especially transition metal dichalcogenides (TMDCs), which attract significant attention owing to their unique properties originating from their atomically thin layered structure. Chemical vapor deposition (CVD) has shown great promise to fabricate large-scale and high-quality TMDC films with exceptional electronic and optical properties. However, the scalable growth of high-quality TMDCs by CVD is yet to meet industrial criteria. Therefore, growth mechanisms should be unveiled for a deeper understanding and further improvement of growth methods are required. This review summarizes the recent progress in the growth methods of TMDCs through CVD and other modified approaches to gain insights into the growth of large-scale and high-quality TMDCs.

Keywords

References

  1. L. Tao, K. Chen, Z. Chen, W. Chen, X. Gui, H. Chen, X. Li, and J.-B. Xu, "Centimeter-Scale CVD Growth of Highly Crystalline Single-Layer $MoS_2$ Film with Spatial Homogeneity and the Visualization of Grain Boundaries," ACS Appl. Mater. Interfaces, 9 [13] 12073-81 (2017). https://doi.org/10.1021/acsami.7b00420
  2. S. Wu, C. Huang, G. Aivazian, J. S. Ross, D. H. Cobden, and X. Xu, "Vapor-Solid Growth of High Optical Quality $MoS_2$ Monolayers with Near-Unity Valley Polarization," ACS Nano, 7 [3] 2768-72 (2013). https://doi.org/10.1021/nn4002038
  3. A. M. Van Der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G.-H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, "Grains and Grain Boundaries in Highly Crystalline Monolayer Molybdenum Disulphide," Nat. Mater., 12 554-61 (2013). https://doi.org/10.1038/nmat3633
  4. Z. Lin, Y. Zhao, C. Zhou, R. Zhong, X. Wang, Y. H. Tsang, and Y. Chai, "Controllable Growth of Large-Size Crystalline $MoS_2$ and Resist-Free Transfer Assisted with a Cu Thin Film," Sci. Rep., 5 18596 (2015). https://doi.org/10.1038/srep18596
  5. J. Zhang, H. Yu, W. Chen, X. Tian, D. Liu, M. Cheng, G. Xie, W. Yang, R. Yang, and X. Bai, "Scalable Growth of High-Quality Polycrystalline $MoS_2$ Monolayers on $SiO_2$ with Tunable Grain Sizes," ACS Nano, 8 [6] 6024-30 (2014). https://doi.org/10.1021/nn5020819
  6. Y. Lee, J. Lee, H. Bark, I.-K. Oh, G. H. Ryu, Z. Lee, H. Kim, J. H. Cho, J.-H. Ahn, and C. Lee, "Synthesis of Wafer-Scale Uniform Molybdenum Disulfide Films with Control over the Layer Number Using a Gas Phase Sulfur Precursor," Nanoscale, 6 [5] 2821-26 (2014). https://doi.org/10.1039/c3nr05993f
  7. Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.-T. Liang, C.-W. Chu, and L.-J. Li, "Wafer-Scale $MoS_2$ Thin Layers Prepared by $MoO_3$ Sulfurization," Nanoscale, 4 [20] 6637-41 (2012). https://doi.org/10.1039/c2nr31833d
  8. K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C.-J. Kim, D. Muller, and J. Park, "High-Mobility Three-Atom-Thick Semiconducting Films with Wafer-Scale Homogeneity," Nature, 520 656-60 (2015). https://doi.org/10.1038/nature14417
  9. J. D. Cain, F. Shi, J. Wu, and V. P. Dravid, "Growth Mechanism of Transition Metal Dichalcogenide Monolayers: the Role of Self-Seeding Fullerene Nuclei," ACS Nano, 10 [5] 5440-45 (2016).
  10. D. Zhu, H. Shu, F. Jiang, D. Lv, V. Asokan, O. Omar, J. Yuan, Z. Zhang, and C. Jin, "Capture the Growth Kinetics of CVD Growth of Two-Dimensional $MoS_2$," npj 2D Mater. Appl., 1 [1] 1-8 (2017).
  11. G. H. Han, N. J. Kybert, C. H. Naylor, B. S. Lee, J. Ping, J. H. Park, J. Kang, S. Y. Lee, Y. H. Lee, and R. Agarwal, "Seeded Growth of Highly Crystalline Molybdenum Disulphide Monolayers at Controlled Locations," Nat. Commun., 6 [1] 6128 (2015). https://doi.org/10.1038/ncomms7128
  12. Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, and L. J. Li, "Synthesis of Large-Area $MoS_2$ Atomic Layers with Chemical Vapor Deposition," Adv. Mater., 24 [17] 2320-25 (2012). https://doi.org/10.1002/adma.201104798
  13. Z. Wang, Q. Huang, P. Chen, S. Guo, X. Liu, X. Liang, and L. Wang, "Metal Induced Growth of Transition Metal Dichalcogenides at Controlled Locations," Sci. Rep., 6 38394 (2016). https://doi.org/10.1038/srep38394
  14. X. Ling, Y.-H. Lee, Y. Lin, W. Fang, L. Yu, M. S. Dresselhaus, and J. Kong, "Role of the Seeding Promoter in $MoS_2$ Growth by Chemical Vapor Deposition," Nano Lett., 14 [2] 464-72 (2014). https://doi.org/10.1021/nl4033704
  15. Y. Li, S. Hao, J. G. DiStefano, A. A. Murthy, E. D. Hanson, Y. Xu, C. Wolverton, X. Chen, and V. P. Dravid, "Site-Specific Positioning and Patterning of $MoS_2$ Monolayers: The Role of Au Seeding," ACS Nano, 12 [9] 8970-76 (2018). https://doi.org/10.1021/acsnano.8b02409
  16. S.-L. Shang, G. Lindwall, Y. Wang, J. M. Redwing, T. Anderson, and Z.-K. Liu, "Lateral Versus Vertical Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Thermodynamic Insight into $MoS_2$," Nano Lett., 16 [9] 5742-50 (2016). https://doi.org/10.1021/acs.nanolett.6b02443
  17. S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran, K. He, and J. H. Warner, "Shape Evolution of Monolayer $MoS_2$ Crystals Grown by Chemical Vapor Deposition," Chem. Mater., 26 [22] 6371-79 (2014). https://doi.org/10.1021/cm5025662
  18. A. Govind Rajan, J. H. Warner, D. Blankschtein, and M. S. Strano, "Generalized Mechanistic Model for the Chemical Vapor Deposition of 2D Transition Metal Dichalcogenide Monolayers," ACS Nano, 10 [4] 4330-44 (2016). https://doi.org/10.1021/acsnano.5b07916
  19. D. Cao, T. Shen, P. Liang, X. Chen, and H. Shu, "Role of Chemical Potential in Flake Shape and Edge Properties of Monolayer $MoS_2$," J. Phys. Chem. C, 119 [8] 4294-301 (2015). https://doi.org/10.1021/jp5097713
  20. M. Saab and P. Raybaud, "Tuning the Magnetic Properties of $MoS_2$ Single Nanolayers by 3d Metals Edge Doping," J. Phys. Chem. C, 120 [19] 10691-97 (2016). https://doi.org/10.1021/acs.jpcc.6b02865
  21. H. Ye, J. Zhou, D. Er, C. C. Price, Z. Yu, Y. Liu, J. Lowengrub, J. Lou, Z. Liu, and V. B. Shenoy, "Toward a Mechanistic Understanding of Vertical Growth of van der Waals Stacked 2D Materials: A Multiscale Model and Experiments," ACS Nano, 11 [12] 12780-88 (2017). https://doi.org/10.1021/acsnano.7b07604
  22. A. Aljarb, Z. Cao, H.-L. Tang, J.-K. Huang, M. Li, W. Hu, L. Cavallo, and L.-J. Li, "Substrate Lattice-Guided Seed Formation Controls the Orientation of 2D Transition-Metal Dichalcogenides," ACS Nano, 11 [9] 9215-22 (2017). https://doi.org/10.1021/acsnano.7b04323
  23. H. Yu, M. Liao, W. Zhao, G. Liu, X. Zhou, Z. Wei, X. Xu, K. Liu, Z. Hu, and K. Deng, "Wafer-Scale Growth and Transfer of Highly-Oriented Monolayer $MoS_2$ Continuous Films," ACS Nano, 11 [12] 12001-7 (2017). https://doi.org/10.1021/acsnano.7b03819
  24. Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P.-H. Tan, and M. Kan, "Epitaxial Monolayer $MoS_2$ on Mica with Novel Photoluminescence," Nano Lett., 13 [8] 3870-77 (2013). https://doi.org/10.1021/nl401938t
  25. D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O'Regan, and F. J. Crowne, "Vertical 2D/3D Semiconductor Heterostructures based on Epitaxial Molybdenum Disulfide and Gallium Nitride," ACS Nano, 10 [3] 3580-88 (2016). https://doi.org/10.1021/acsnano.5b08008
  26. M. Okada, T. Sawazaki, K. Watanabe, T. Taniguch, H. Hibino, H. Shinohara, and R. Kitaura, "Direct Chemical Vapor Deposition Growth of WS2 Atomic Layers on Hexagonal Boron Nitride," ACS Nano, 8 [8] 8273-77 (2014). https://doi.org/10.1021/nn503093k
  27. Y. Zhang, Q. Ji, J. Wen, J. Li, C. Li, J. Shi, X. Zhou, K. Shi, H. Chen, and Y. Li, "Monolayer $MoS_2$ Dendrites on a Symmetry-Disparate $SrTiO_3$ (001) Substrate: Formation Mechanism and Interface Interaction," Adv. Funct. Mater., 26 [19] 3299-305 (2016). https://doi.org/10.1002/adfm.201505571
  28. J. Chen, X. Zhao, G. Grinblat, Z. Chen, S. J. Tan, W. Fu, Z. Ding, I. Abdelwahab, Y. Li, and D. Geng, "Homoepitaxial Growth of Large-Scale Highly Organized Transition Metal Dichalcogenide Patterns," Adv. Mater., 30 [4] 1704674 (2018). https://doi.org/10.1002/adma.201704674
  29. X. Zhang, T. H. Choudhury, M. Chubarov, Y. Xiang, B. Jariwala, F. Zhang, N. Alem, G.-C. Wang, J. A. Robinson, and J. M. Redwing, "Diffusion-Controlled Epitaxy of Large Area Coalesced $WSe_2$ Monolayers on Sapphire," Nano Lett., 18 [2] 1049-56 (2018). https://doi.org/10.1021/acs.nanolett.7b04521
  30. S. H. Choi, B. Stephen, J. H. Park, J. S. Lee, S. M. Kim, W. Yang, and K. K. Kim, "Water-Assisted Synthesis of Molybdenum Disulfide Film with Single Organic Liquid Precursor," Sci. Rep., 7 [1] 1983 (2017). https://doi.org/10.1038/s41598-017-02228-8
  31. T. Millner and J. Neugebauer, "Volatility of the Oxides of Tungsten and Molybdenum in the Presence of Water Vapour," Nature, 163 601-2 (1949).
  32. G. Belton and A. Jordan, "The Volatilization of Molybdenum in the Presence of Water Vapor," J. Phys. Chem., 69 [6] 2065-71 (1965). https://doi.org/10.1021/j100890a043
  33. G. Belton and R. McCarron, "The Volatilization of Tungsten in the Presence of Water Vapor," J. Phys. Chem., 68 [7] 1852-56 (1964). https://doi.org/10.1021/j100789a030
  34. W. Chen, J. Zhao, J. Zhang, L. Gu, Z. Yang, X. Li, H. Yu, X. Zhu, R. Yang, and D. Shi, "Oxygen-Assisted Chemical Vapor Deposition Growth of Large Single-Crystal and High-Quality Monolayer $MoS_2$," J. Am. Chem. Soc., 137 [50] 15632-35 (2015). https://doi.org/10.1021/jacs.5b10519
  35. J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. Yu, and J. Lei, "A Library of Atomically Thin Metal Chalcogenides," Nature, 556 355-59 (2018). https://doi.org/10.1038/s41586-018-0008-3
  36. S. Li, Y.-C. Lin, W. Zhao, J. Wu, Z. Wang, Z. Hu, Y. Shen, D.-M. Tang, J. Wang, and Q. Zhang, "Vapour-Liquid-Solid Growth of Monolayer $MoS_2$ Nanoribbons," Nat. Mater., 17 535-42 (2018). https://doi.org/10.1038/s41563-018-0055-z
  37. S. Li, S. Wang, D.-M. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golberg, and G. Eda, "Halide-Assisted Atmospheric Pressure Growth of Large $WSe_2\;and\;WS_2$ Monolayer Crystals," Appl. Mater. Today, 1 [1] 60-6 (2015). https://doi.org/10.1016/j.apmt.2015.09.001
  38. Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, and B. I. Yakobson, "Vertical and In-Plane Heterostructures from $WS_2/MoS_2$ Monolayers," Nat. Mater., 13 1135-42 (2014). https://doi.org/10.1038/nmat4091
  39. A.-Y. Lu, H. Zhu, J. Xiao, C.-P. Chuu, Y. Han, M.-H. Chiu, C.-C. Cheng, C.-W. Yang, K.-H. Wei, and Y. Yang, "Janus Monolayers of Transition Metal Dichalcogenides," Nat. Nanotechnol., 12 744-49 (2017). https://doi.org/10.1038/nnano.2017.100
  40. J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V. B. Shenoy, and L. Shi, "Janus Monolayer Transition-Metal Dichalcogenides," ACS Nano, 11 [8] 8192-98 (2017). https://doi.org/10.1021/acsnano.7b03186
  41. D. Kong, H. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao, and Y. Cui, "Synthesis of $MoS_2\;and\;MoSe_2$ Films with Vertically Aligned Layers," Nano Lett., 13 [3] 1341-47 (2013). https://doi.org/10.1021/nl400258t
  42. L. Zhang, K. Liu, A. B. Wong, J. Kim, X. Hong, C. Liu, T. Cao, S. G. Louie, F. Wang, and P. Yang, "Three-Dimensional Spirals of Atomic Layered $MoS_2$," Nano Lett., 14 [11] 6418-23 (2014). https://doi.org/10.1021/nl502961e
  43. J. Zhang, M. Ye, S. Bhandari, A. K. M. Muqri, F. Long, S. Bigham, Y. K. Yap, and J. Y. Suh, "Enhanced Second and Third Harmonic Generations of Vertical and Planar Spiral $MoS_2$ Nanosheets," Nanotechnology, 28 [29] 295301 (2017). https://doi.org/10.1088/1361-6528/aa7825
  44. J. Verble, T. Wietling, and P. Reed, "Rigid-Layer Lattice Vibrations and van der Waals Bonding in Hexagonal $MoS_2$," Solid State Commun., 11 [8] 941-44 (1972). https://doi.org/10.1016/0038-1098(72)90294-3
  45. D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, and Z. Liu, and Y. Cui, "Few-Layer Nanoplates of $Bi_2Se_3$ and $Bi_2Te_3$ with Highly Tunable Chemical Potential," Nano Lett., 10 [6] 2245-50 (2010). https://doi.org/10.1021/nl101260j
  46. J. Zheng, X. Yan, Z. Lu, H. Qiu, G. Xu, X. Zhou, P. Wang, X. Pan, K. Liu, and L. Jiao, "High-Mobility Multilayered $MoS_2$ Flakes with Low Contact Resistance Grown by Chemical Vapor Deposition," Adv. Mater., 29 [13] 1604540 (2017). https://doi.org/10.1002/adma.201604540
  47. S. M. Shinde, K. P. Dhakal, X. Chen, W. S. Yun, J. Lee, H. Kim, and J.-H. Ahn, "Stacking-Controllable Interlayer Coupling and Symmetric Configuration of Multilayered $MoS_2$," NPG Asia Mater., 10 e468 (2018). https://doi.org/10.1038/am.2017.226
  48. J. C. Park, S. J. Yun, H. Kim, J.-H. Park, S. H. Chae, S.-J. An, J.-G. Kim, S. M. Kim, K. K. Kim, and Y. H. Lee, "Phase-Engineered Synthesis of Centimeter-Scale 1T′-and 2H-Molybdenum Ditelluride Thin Films," ACS Nano, 9 [6] 6548-54 (2015). https://doi.org/10.1021/acsnano.5b02511
  49. S. Cho, S. Kim, J. H. Kim, J. Zhao, J. Seok, D. H. Keum, J. Baik, D.-H. Choe, K. J. Chang, and K. Suenaga, "Phase Patterning for Ohmic Homojunction Contact in $MoTe_2$," Science, 349 [6248] 625-28 (2015). https://doi.org/10.1126/science.aab3175
  50. S. Song, D. H. Keum, S. Cho, D. Perello, Y. Kim, and Y. H. Lee, "Room Temperature Semiconductor-Metal Transition of $MoTe_2$ Thin Films Engineered by Strain," Nano Lett., 16 [1] 188-93 (2015). https://doi.org/10.1021/acs.nanolett.5b03481
  51. Y. Li, K.-A. N. Duerloo, K. Wauson, and E. J. Reed, "Structural Semiconductor-to-Semimetal Phase Transition in Two-Dimensional Materials Induced by Electrostatic Gating," Nat. Commun., 7 10671 (2016). https://doi.org/10.1038/ncomms10671
  52. J. H. Sung, H. Heo, S. Si, Y. H. Kim, H. R. Noh, K. Song, J. Kim, C.-S. Lee, S.-Y. Seo, and D.-H. Kim, "Coplanar Semiconductor-Metal Circuitry Defined on Few-Layer $MoTe_2$ via Polymorphic Heteroepitaxy," Nat. Nanotechnol., 12 1064-70 (2017). https://doi.org/10.1038/nnano.2017.161
  53. T. A. Empante, Y. Zhou, V. Klee, A. E. Nguyen, I.-H. Lu, M. D. Valentin, S. A. Naghibi Alvillar, E. Preciado, A. J. Berges, and C. S. Merida, "Chemical Vapor Deposition Growth of Few-Layer $MoTe_2$ in the 2H, 1T′, and 1T Phases: Tunable Properties of $MoTe_2$ Films," ACS Nano, 11 [1] 900-5 (2017). https://doi.org/10.1021/acsnano.6b07499

Cited by

  1. Functional Layered Double Hydroxide Nanohybrids for Biomedical Imaging vol.9, pp.10, 2019, https://doi.org/10.3390/nano9101404
  2. Biocompatible Hydrotalcite Nanohybrids for Medical Functions vol.10, pp.2, 2019, https://doi.org/10.3390/min10020172
  3. Study of the Properties of Two-Dimensional MoS2 and WS2 Films Synthesized by Chemical-Vapor Deposition vol.54, pp.4, 2020, https://doi.org/10.1134/s1063782620040193
  4. MoS 2 ‐Based Nanomaterials for Room‐Temperature Gas Sensors vol.5, pp.5, 2019, https://doi.org/10.1002/admt.201901062
  5. Phase-field modelling of 2D island growth morphology in chemical vapor deposition vol.43, pp.9, 2020, https://doi.org/10.1140/epje/i2020-11981-8
  6. Robust Room-Temperature NO2 Sensors from Exfoliated 2D Few-Layered CVD-Grown Bulk Tungsten Di-selenide (2H-WSe2) vol.13, pp.3, 2019, https://doi.org/10.1021/acsami.0c17924
  7. Efficient ReSe2 Photodetectors with CVD Single-Crystal Graphene Contacts vol.11, pp.7, 2021, https://doi.org/10.3390/nano11071650
  8. Layered Double Hydroxide Nanomaterials: Biomedical Applications, Current Status and Challenges vol.11, pp.3, 2019, https://doi.org/10.1142/s1793984421300089