
I. Introduction

Recently with the rapid development of AI (Artificial 

Intelligence), environmental sound classification has been a 

research focus of many applications from surveillance,[1] 

to environmental monitoring.[2-5] AI has been applied to 

the detection and classification of certain animal species 

through acoustic sounds to provide information used by 
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ABSTRACT: In this paper, combining features is proposed as a way to enhance the classification accuracy of 

sounds under noisy environments using the CNN (Convolutional Neural Network) structure. A robust log 

Mel-filter bank using Wiener filter and PNCCs (Power Normalized Cepstral Coefficients) are extracted to form 

a 2-dimensional feature that is used as input to the CNN structure. An ebird database is used to classify 43 types 

of bird species in their natural environment. To evaluate the performance of the combined features under noisy 

environments, the database is augmented with 3 types of noise under 4 different SNRs (Signal to Noise Ratios) (20 

dB, 10 dB, 5 dB, 0 dB). The combined feature is compared to the log Mel-filter bank with and without incorporating the 

Wiener filter and the PNCCs. The combined feature is shown to outperform the other mentioned features under clean 

environments with a 1.34 % increase in overall average accuracy. Additionally, the accuracy under noisy environments 

at the 4 SNR levels is increased by 1.06 % and 0.65 % for shop and schoolyard noise backgrounds, respectively.
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초    록: 본 논문에서는 합성곱 신경망(Convolutional Neural Network, CNN) 구조를 이용하여 잡음 환경에서 음향 

신호를 분류할 때, 인식률을 높이는 결합 특징을 제안한다. 반면, Wiener filter를 이용한 강인한 log Mel-filter bank와 

PNCCs(Power Normalized Cepstral Coefficients)는 CNN 구조의 입력으로 사용되는 2차원 특징을 형성하기 위해 

추출됐다. 자연환경에서 43종의 조류 울음소리를 포함한 ebird 데이터베이스는 분류 실험을 위해 사용됐다. 잡음 환경

에서 결합 특징의 성능을 평가하기 위해 ebird 데이터베이스를 3종류의 잡음을 이용하여 4개의 다른 SNR (Signal to 

Noise Ratio)(20 dB, 10 dB, 5 dB, 0 dB)로 합성했다. 결합 특징은 Wiener filter를 적용한 log-Mel filter bank, 적용하

지 않은 log-Mel filter bank, 그리고 PNCC와 성능을 비교했다. 결합 특징은 잡음이 없는 환경에서 1.34 % 인식률 향상

으로 다른 특징에 비해 높은 성능을 보였다. 추가적으로, 4단계 SNR의 잡음 환경에서 인식률은 shop 잡음 환경과 

schoolyard 잡음 환경에서 각각 1.06 %, 0.65 % 향상했다.
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applications monitoring biodiversity and endangered 

species preservation. These environmental monitoring 

applications classify the sounds of animals ranging from 

marine life[3,4] to bats[5] or birds.[6,7]

To capture the information contained in acoustic event 

classification,[8,9] sound and automatic speech recognition[10–12] 

have used several features, such Mel-log filter bank and 

MFCCs (Mel Frequency Cepstral Coefficients), which are 

based on the human auditory system. Even though such 

features have dominated in acoustic applications, and 

continue to do so, their performance decreases with the 

amount of noise present in the signal. Therefore, several 

attempts to suppress noise without distorting the acoustic 

signal have been proposed using stationary noise suppression 

mechanisms to achieve system performance under environ-

mental noisy conditions. These methods include the use of 

the Wiener filter, PNCCs (Power Normalized Cepstral 

Coefficients)[13] and RCGCCs (Robust Compressive Gamma-

chirp filter bank Cepstral Coefficients).[14] While such 

features do improve performance, their effectiveness still 

depends on the types or characteristics of the noise present, 

such as whether it is non-stationary noise. Interestingly, 

recent research has shown that using combinations of 

features can boost overall system performance. For example, 

References [15], [16] show that combining MFCC features 

with PNCC features, which are both robust to noise, makes 

the overall system, which can then learn from and exploit 

both features, perform better under noisy environments.

In this work, we investigate combined robust feature 

performance under noisy environments using both PNCCs, 

and the log Mel-filter bank integrated with the Wiener 

filter, which both work with stationary noise but use 

different stationary noise suppression algorithms. Firstly, 

the Wiener filter is combined with the log Mel-filter bank 

to suppress stationary noise which is an optimal causal 

system where the power spectrum of the noise is estimated 

based on the present and previous signal frames to provide 

an estimate of the clean signal based on the mean square 

error. Integrating the Wiener filter will allow use of a log 

Mel-filter bank and also suppress noise using an optimal 

estimation.[17] Secondly, the PNCCs are employed as they 

achieve good performance under noisy environments by 

applying the medium duration power bias subtraction 

algorithm, which is based on asymmetric filtering and 

temporal masking effects. Additionally, the PNCC uses 

the power law nonlinearity with gammatone filter instead 

of the log and the triangular filter used by the log 

Mel-filter bank.[13] Given the different characteristics of 

these features, we expect that combining them through a 

convolutional layer that enables the system to extract 

features from both will boost system performance for bird 

sound classification under both clean and noisy environ-

ments. The proposed extraction method is explained in 

more detail in section II and the experimental work and 

discussion in section III.

II. Proposed Method

This section describes the proposed method consisting 

of two principal stages, the feature extraction stage and the 

classification stage, which uses the AlexNet structure[18] to 

classify bird species. In the feature extraction stage, both 

the log Mel filter bank with Wiener filter and PNCC noise 

estimations and their characteristics will be elucidated in 

more detail as well as the combining procedure of both 

features that feeds into the AlexNet network. Fig. 1 

illustrates the feature extraction steps of both features.

Fig. 1. Feature extraction for robust log Mel-filter bank 

and PNCC feature.
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2.1 Feature Extraction

2.1.1 Log Mel-Filter Bank with Wiener filter

Mel-filter bank is been widely used and it is designed 

based on the human auditory system. In order to extract the 

enhanced or robust features, the optimal Wiener filter is 

used after obtaining the spectrum of the signal following 

the work and recommendation in Reference [19]. As we 

assuming an additive noise as in Reference [20], where the 

Y(f), S(f), W(f) denotes the observed, desired, and noise 

signal in frequency domain. Also, the Wiener filter output 

or transfer function can be expressed in the frequency 

domain as in Eq. (2), clean or enhanced signal can be 

demonstrated using Eq. (3).

   . (1)

  






. (2)

   

 . (3)

The  and  are the desired observed and noise power 

spectra, respectively. Therefore, the estimated signal can be 

obtained through Eq. (3) by first estimating the noise signal 

spectrum using the MMSE-SPP (Minimum Mean Square 

Eerror - soft Speech Presence Probability) algorithm proposed 

in Reference [21], which does not require bias correction or 

VAD (Voice Activity Detection) as the MMSE-based noise 

spectrum estimate approach would.

2.1.2 PNCCs (Power Normalized Cepstral Coeffi-

cients)

The PNCC features are designed for stationary noise 

suppression, a goal which can also be achieved using the 

log Mel-filter bank. However, the PNCC algorithm has 

three main differences. It uses the gammatone filter to 

replace the filter bank and applies power-law nonlinearity 

based on the hearing of Steven’s law power[22] as this 

approach leads to close to zero output when the input is too 

small, in contrast to the log function that is used for the 

Mel-log filter bank features. In addition, it performs a peak 

power normalization using the medium-time power bias 

subtraction method proposed in Reference [13]. This method 

does not estimate the noise power from non-speech 

frames, but instead removes the power bias that has 

information about the level of the background noise as 

assumed, and uses the ratio of the arithmetic mean to the 

geometric mean when determining the power bias. The 

final power can be obtained through Eqs. (4) - (6).








′





′ . (4)

 ′max . (5)

 





′  max 

min  



′ . (6)

Hence,  is the channel index,  is the frame index,    is 

total number of channels,   is the power observed in 

a single analysis frame,   is the average power of 7 

frames (M = 3), and the normalized power ( ′  

can be obtained by subtracting the level of background 

excitation (). In addition, the d0 in (5) is constant to 

prevent the normalized power from becoming negative. 

Therefore, the final power ((i,j)) can be obtained though 

Eq. (6). For more details refer to Reference [13].

2.1.3 Features Combination using Convlutional 

Network

This stage aims to find the best feature representation of 

data based the available features map using the 

convolutional neural network. Where, the combined 

features are obtained by concatenated both extracted 

features and create a 3-dimensional features (features, 

frames, 2) in order to be fed into a convolutional layer to 

get only one feature mapping representation (k = 1) of both 

extracted feature type (features, frames, 1), whereas the 

mapping is done with a trainable filter size of (l, l, q) 

known as filter bank (W) that connect the feature map (q = 1) 
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(a) (b)

(c) (d)

(e)

Fig 2. Power spectral density of the extracted features of (a) log mel-filter bank of clean signal, (b) log mel-filter 

bank under shop noise (10 dB), (c) robust log mel-filter bank under shop noise (10 dB), (d) PNCC under shop noise, 

and (e) combine features under noise (10 dB).

(a)

(b)

Fig. 3. Convolutional neural network architecture for classifying using (a) single feature (baseline) (b) combined 

features.
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of the input to the layer into the output or desired map (k) 

which can be obtained using Eq. (7).

  
  






  , (7)

where * is 2-dim convolution operator, b is bias and  

denotes the features in each feature map.[23] This will allow 

the network to assign a certain weight or importance to 

each feature in the feature map for both the PNCCs and 

robust log Mel-filter bank. This leads to a better system 

performance by highlighting the most significant features 

that can post our system. Fig. 2 shows the power spectral 

density of the extracted features from the robust log 

Mel-filter bank, PNCCs and combined features under shop 

noise with an SNR (Signal to Noise Ratio) of 10 dB. 

Looking at the results we can observe that the combined 

extracted features seem to sum and exploit both features by 

keeping more information that are similar to the log 

Mel-filter bank and reducing a fraction of the added noise.

2.2 ALexNet

Based on References [18], [24], the CNN structure is 

composed of 5 convolutional layers with a 3 × 3 filter size 

and a stride of 1, and 3 max pooling layers. Max-pooling 

layers with a filter size of 2 × 2 and a stride of 2 were used 

after the first, second and the fifth convolutional layers. 

Three fully connected layers were used following the 5 

convolutional layers separated by a dropout as used in 

References [24]. Fig. 3 illustrates the CNN structure for 

classification using the single feature and combined features.

III. Experimental Work

3.1 Dataset

The bird sounds were collected from https://ebird.org at 

a sample rate of 44.1 kHz, and down sampled to 16-bit 

resolution and segmented using the EPD (End-Point 

Detection) method[25] based on the procedure in Reference 

[7] for data processing and segmentation. This resulted in 

0.719 s audio samples of 43 bird class species. The 

database was augmented with 3 types of background noise 

(café, shop and schoolyard) at 4 levels of SNR (20 dB, 10 

dB, 5 dB and 0 dB) using ADDNOISE MATLAB.[26]

3.2 Experimental Setting

The baseline features are the log Mel-filter bank with 

and without the Wiener Filter, where the Wiener filter is 

applied after taking the spectrum of the signal, as well as 

the PNCCs. The features were extracted from 0.719 s 

audio sounds and resulted in 40 features with 62 frames per 

audio. These features were used as inputs to the AlexNet 

structure for classification as explained in Fig. 3(b). When 

using the proposed method, both the robust log Mel-filter 

bank (log Mel-filter bank with Wiener filter) and PNCCs 

were concatenated to get 3-D (40 × 62 × 2) arrays which 

were used as inputs to the network to extract one 3-D 

feature map, as explained in section 2 and illustrated in Fig. 

3, using a filter size of (1, 1, 2). Moreover, the database was 

divided into training and test sets using 5-fold cross validation, 

resulting in 5 sets. Each feature vector was normalized by 

the mean and variance before being fed into the AlexNet 

Table 1. Bird species classification in clean environment.

Folds Log mel-filter bank (FB)
Log mel-filter bank with 

Wiener filter (FB&WF)
PNCCs

Combined feature 

(PNCCs, FB & WF)

Fold1 79.23 % 79.92 % 79.25 % 82.65 %

Fold2 81.24 % 80.41 % 79.78 % 82.00 %

Fold3 81.10 % 79.57 % 79.55 % 81.40 %

Fold4 79.57 % 80.27 % 78.47 % 81.68 %

Fold5 82.14 % 77.13 % 78.93 % 82.26 %

Avg. accuracy (%) 80.66 % 79.46 % 79.20 % 82.00 %
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for training. In the AlexNet structure, a dropout of 0.5 was 

used to reduce the effect of overfitting after the fully-connec-

ted layer, and ReLU (Rectified Linear Unit) activation 

function were used with batch size of 500.

3.3 Results and Discussion

Table 1 illustrates the overall accuracy for all 43 given 

classes for all 5 folds. The combined features gave the 

highest average accuracy of 82 % among all the features 

meaning an increase in average accuracy of 1.34 % over 

the Mel log-filter bank. This was followed by accuracies of 

80.66 % and 79.46 % for the Mel log-filter bank and robust 

log Mel-filter bank, respectively. The PNCCs demonstrated 

the lowest average accuracy of 79.20 % with the clean data.

In addition, these features’ performances were tested on 

the augmented data and the results are presented in Table 

2. Notably, the combined feature almost always outperforms 

the others except the cases of the café augmented data with 

SNRs of 5 dB and 0 dB where the PNCCs give the highest 

accuracy rates of 61.09 % and 48.85 %, respectively. The 

overall percentage increases in accuracy with shop and 

schoolyard background noise, respectively, under all SNRs 

were 1.06 % and 0.65 %. However, there was a decrease in 

average overall accuracy over all SNR levels for the café 

background noise type of 0.31 %. Fig. 4 shows the confusion 

Table 2. Bird species classification accuracy in noisy environment.

Noise type SNR (dB)
Log mel-filter bank (FB) 

avg. accuracy 

Log mel-filter bank with 

Wiener filter (FB&WF) 

avg. accuracy

PNCC avg. accuracy

Combined feature 

(PNCC, FB&WF) avg. 

accuracy

Café 20 74.05 % 70.99 % 76.98 % 77.92 %

 10 61.96 % 57.32 % 68.99 % 69.02 %

 5 51.46 % 48.37 % 61.09 % 60.26 %

 0 38.03 % 37.85 % 48.85 % 47.46 %

Shop 20 77.38 % 74.62 % 76.97 % 78.31 %

 10 68.50 % 64.82 % 69.15 % 70.00 %

 5 60.10 % 57.17 % 61.66 % 62.75 %

 0 47.28 % 46.58 % 49.23 % 50.20 %

School yard 20 70.55 % 70.53 % 73.46 % 74.83 %

 10 50.60 % 53.33 % 56.77 % 57.49 %

 5 39.48 % 41.51 % 44.85 % 45.16 %

 0 29.03 % 29.42 % 31.67 % 31.87 %

(a)

(b)

(c)

Fig. 4. The confusion matrix for noise with type shop 

under SNR of 10 dB for (a) robust log mel-filter bank 

(b) PNCC features and (c) combined features.
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matrix of the combined features, PNCCs and robust log 

Mel-filter bank under shop background noise with an SNR 

of 10 dB.

However, the background noise is non-stationary noise 

and both features focus on a noise suppression feature that 

works with stationary noise. Therefore, the performance of 

the log Mel filter bank with the Wiener filter inevitably 

cannot give a better performance across all noise types and 

PNCCs enhanced the performance most effectively under 

the noisy environment. By combining these two features, 

the network seems to highlight and signify the most relevant 

features contained in both and therefore led to an increase 

in overall accuracy under both clean and noisy environments.

IV. Conclusions

In this work, we proposed 3-D combined robust features 

feeding to a convolutional layer followed by AlexNet for 

acoustic sound classification. The database of ebird.com 

was used to test the performance of the log Mel-filter bank, 

PNCC and combined features structure. The combined 

features structure outperformed the single features in most 

cases yielding an increase in accuracy by 1.34 % in a clean 

environment and 1.06 % and 0.65 % under shop and 

schoolyard background noise environments, respectively 

when averaged over 4 different SNR levels. These results 

illustrated that extracting these features from the combined 

ones using a convolutional neural network can exploit the 

complementarity of the combined features by making 

them accessible to the classification step, and thereby 

increase the recognition rate.
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