DOI QR코드

DOI QR Code

Effects of Si Addition on the Microstructure and Properties of Cr-Al alloy for High Temperature Coating

고온 코팅용 Cr-Al합금의 미세조직 및 특성에 미치는 Si 첨가의 영향

  • Kim, Jeong-Min (Department of Materials Science and Engineering, Hanbat National University) ;
  • Kim, Il-Hyun (Light Water Reactor Fuel Technology Division, Korea Atomic Energy Research Institute) ;
  • Kim, Hyun-Gil (Light Water Reactor Fuel Technology Division, Korea Atomic Energy Research Institute)
  • Received : 2018.09.28
  • Accepted : 2018.10.23
  • Published : 2019.01.27

Abstract

Cr-Al alloys are attracting attention as oxidation resistant coating materials for high temperature metallic materials due to their excellent high temperature stability. However, the mechanical properties and oxidation resistance of Cr-Al alloys can be further enhanced, and such attempts are made in this study. To improve the properties of Cr-Al alloys, Si is added up to 5 wt%. Casting specimens with different amounts of Si content are prepared by a vacuum arc remelting method and isothermally heated under steam conditions at $1,100^{\circ}C$ for 1 hour. The as-cast microstructure of low Si alloys is mainly composed of only a Cr phase, while $Al_8Cr_5$ and $Cr_3Si$ phases are also observed in the 5 % Si alloy. In the high Si alloy, only Cr and $Cr_3Si$ phases remain after the isothermal heating at $1,100^{\circ}C$. It is found that Si additions slightly decrease the oxidation resistance of the Cr-Al alloy. However, the microhardness of the Cr-Al alloy is observed to increase with an increasing Si content.

Keywords

References

  1. W. Zhong, P. A. Mouche and B. J. Heuser, J. Nucl. Mater., 498, 137 (2018). https://doi.org/10.1016/j.jnucmat.2017.10.021
  2. T. K. Sawarn, S. Banerjee, A. Samanta, B. N. Rath and S. Kumar, J. Nucl. Mater., 467, 820 (2015). https://doi.org/10.1016/j.jnucmat.2015.10.012
  3. H. G. Kim, I. H. Kim, Y. I. Jung, D. J. Park and J. Y. Park, J. Nucl. Mater., 465, 531 (2015). https://doi.org/10.1016/j.jnucmat.2015.06.030
  4. A. S. Kuprin, V. A. Belous, V. N. Voyevodin, V. V. Bryk, R. L. Vasilenko, V. D. Ovcharenko, E. N. Reshetnyak, G. N. Tolmachova and P. N. V'yugov, J. Nucl. Mater., 465, 400 (2015). https://doi.org/10.1016/j.jnucmat.2015.06.016
  5. J. M. Kim, J. C. Lee, I. H. Kim and H. G. Kim, Korean J. Mater. Res., 27, 563 (2017). https://doi.org/10.3740/MRSK.2017.27.10.563
  6. J. M. Kim, T. H. Ha, I. H. Kim and H. G. Kim, Metals, 7, 59 (2017). https://doi.org/10.3390/met7020059
  7. C. Chen, J. Zhang, C. Duan, X. Feng and Y. Shen, J. Alloy. Compd., 660, 208 (2016). https://doi.org/10.1016/j.jallcom.2015.11.094
  8. S. Cui and I. H. Jung, J. Alloy. Compd., 708, 887 (2017). https://doi.org/10.1016/j.jallcom.2017.03.042
  9. Y. Liang, C. Guo, C. Li and Z. Du, JPEDAV, 30, 462 (2009). https://doi.org/10.1007/s11669-009-9572-4
  10. R. Yang, Q. Wu, S. Li and S. Gong, Procedia Eng., 27, 976 (2012). https://doi.org/10.1016/j.proeng.2011.12.544
  11. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the high-temperature oxidation of metals, p. 101, Cambridge Univ. Press, Cambridge, UK (2006).
  12. I. Rosales and H. Martinez, J. Mater. Sci. Chem. Eng., 2, 64 (2014). https://doi.org/10.4236/msce.2014.211009
  13. J. Newkirk and J. A. Hawk, Wear, 251, 1361 (2001). https://doi.org/10.1016/S0043-1648(01)00768-2