DOI QR코드

DOI QR Code

Effect of Electrochemical Treatment on the Chlorine Generation Efficiency of Ballast Water in the Brackish Zone

기수지역 선박평형수의 염소 생성 효율에 미치는 전기화학 처리의 영향

  • Choi, Yong-Sun (Dept. of Information & Electronics Engineering, Uiduk University) ;
  • Lee, You-Kee (Division of Green Energy Engineering, Uiduk University)
  • 최용선 (위덕대학교 일반대학원 정보전자공학) ;
  • 이유기 (위덕대학교 그린에너지공학부)
  • Received : 2018.08.08
  • Accepted : 2018.11.15
  • Published : 2019.01.27

Abstract

Indirect oxidation using chlorine species oxidizing agents is often effective in wastewater treatment using an electrochemical oxidation process. When chlorine ions are contained in the wastewater, oxidizing agents of various chlorine species are produced during electrolysis. In a ballast water management system, it is also used to treat ballast water by electrolyzing seawater to produce a chlorine species oxidizer. However, ballast water in the brackish zone and some wastewater has a low chlorine ion concentration. Therefore, it is necessary to study the chlorine generation current efficiency at various chlorine concentration conditions. In this study, the chlorine generating current efficiency of a boron-doped diamond(BDD) electrode and insoluble electrodes are compared with various chloride ion concentrations. The results of this study show that the current efficiency of the BDD electrode is better than that of the insoluble electrodes. The chlorine generation current efficiency is better in the order of BDD, MMO(mixed metal oxide), $Ti/RuO_2$, and $Ti/IrO_2$ electrodes. In particular, when the concentration of sodium chloride is 10 g/L or less, the current efficiency of the BDD electrode is excellent.

Keywords

References

  1. L. C. Chiang, J. E. Chang and T. C. Wen, Water Res., 29, 671 (1995). https://doi.org/10.1016/0043-1354(94)00146-X
  2. C. A. Martinez-Huitle and S. Ferroa, Chem. Soc. Rev., 35, 1324 (2006). https://doi.org/10.1039/B517632H
  3. S. Chen, W. Hu, J. Hong and S. Sandoe, Mar. Pollut. Bull., 105, 319 (2016). https://doi.org/10.1016/j.marpolbul.2016.02.003
  4. E. Lacasa, E. Tsolaki, Z. Sbokou, M. A. Rodrigo, D. Mantzavinos and E. Diamadopoulos, Chem. Eng. J., 223, 516 (2013). https://doi.org/10.1016/j.cej.2013.03.003
  5. Y. S. Choi, Y. K. Lee, J. Y. Kim and Y. K. Lee, Korean J. Mater. Res., 28, 301 (2018). https://doi.org/10.3740/MRSK.2018.28.5.301
  6. K. Benzhour, J. Szatkowski, F. Rozploch and K. Stec, Acta Phys. Pol. A, 118, 447 (2010). https://doi.org/10.12693/APhysPolA.118.447
  7. A. Tallaire, C. Rond, F. Benedic, O. Brinza, J. Achard, F. Silva and A. Gicquel, Phys. Status Solidi A, 208, 2028 (2011). https://doi.org/10.1002/pssa.201100017
  8. D. Zhou, D. M. Gruen, L. C. Qin, T. G. McCauley and A. R. Krauss, J. Appl. Phys., 84, 1981 (1998). https://doi.org/10.1063/1.368331
  9. J. J. Gracio, Q. H. Fan and J. C. Madaleno, J. Phys. D: Appl. Phys., 43, 374017 (2010). https://doi.org/10.1088/0022-3727/43/37/374017
  10. L. Lin, J. Wang, J. Weng, X. Cui and Y. Zhang, Plasma Sci. Tech., 17, 216 (2015). https://doi.org/10.1088/1009-0630/17/3/08
  11. Y. Zhang, F. Zhang, Q. J. Gao, D. P. Yu, X. F. Peng and Z. D. Lin, Chin. Phys. Lett., 18, 286 (2001). https://doi.org/10.1088/0256-307X/18/2/345
  12. B. J. Hernlem and L. S. Tsai, J. Food Sci., 65, 834 (2000). https://doi.org/10.1111/j.1365-2621.2000.tb13596.x
  13. M. Rajab, C. Heim, T. Letzel, J. E. Drewes and B. Helmreich, Chemosphere, 121, 47 (2015) https://doi.org/10.1016/j.chemosphere.2014.10.075
  14. H. A. Hansen, I. C. Man, F. Studt, F. Abild-Pedersen, T. Bligaard and J. Rossmeisl, Phys. Chem. Chem. Phys., 12, 283 (2009). https://doi.org/10.1039/b917459a
  15. G. Chen, Sep. Purif. Technol., 38, 11 (2004). https://doi.org/10.1016/j.seppur.2003.10.006
  16. W. Miled, A. Haj Said and S. Roudesli, J. Text. Apparel, Technol. Manage., 6, 89 (2010).
  17. R. Balaji, B. S. Kannan, J. Lakshmi, N. Senthil, S. Vasudevan, G. Sozhan, A. K. Shukla and S. Ravichandran, Electrochem. Comm., 11, 1700 (2009). https://doi.org/10.1016/j.elecom.2009.06.022
  18. H. S. Lee, S. K. Kim, H. W. Seok, J. H. Kim, H. J. Choi and H. I. Jung, Korean J. Mater. Res., 22, 86 (2012). https://doi.org/10.3740/MRSK.2012.22.2.86
  19. T. Le Luu, J. Kim and J. Yoon, J. Ind. Eng. Chem., 21, 400 (2015). https://doi.org/10.1016/j.jiec.2014.02.052
  20. V. Trieu, B. Schley, H. Natter, J. Kintrup, A. Bulan and R. Hempelmann, Electrochim. Acta, 78, 188 (2012). https://doi.org/10.1016/j.electacta.2012.05.122