DOI QR코드

DOI QR Code

Synthesis and Characterization of Silica Composite for Digital Light Processing

광경화 3D 프린팅 공정을 위한 실리카 복합소재 합성 및 특성 분석

  • Lee, Jin-Wook (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Nahm, Sahn (Department of Material Science and Engineering, Korea University) ;
  • Hwang, Kwang-Taek (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Ung-Soo (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Han, Kyu-Sung (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology)
  • 이진욱 (한국세라믹기술원 도자세라믹센터) ;
  • 남산 (고려대학교 신소재공학과) ;
  • 황광택 (한국세라믹기술원 도자세라믹센터) ;
  • 김진호 (한국세라믹기술원 도자세라믹센터) ;
  • 김응수 (한국세라믹기술원 도자세라믹센터) ;
  • 한규성 (한국세라믹기술원 도자세라믹센터)
  • Received : 2018.07.10
  • Accepted : 2018.12.04
  • Published : 2019.01.27

Abstract

Three-dimensional(3D) printing is a process for producing complex-shaped 3D objects by repeatedly stacking thin layers according to digital information designed in 3D structures. 3D printing can be classified based on the method and material of additive manufacturing process. Among the various 3D printing methods, digital light processing is an additive manufacturing technique which can fabricate complex 3D structures with high accuracy. Recently, there have been many efforts to use ceramic material for an additive manufacturing process. Generally, ceramic material shows low processability due to its high hardness and strength. The introduction of additive manufacturing techniques into the fabrication of ceramics will improve the low processability and enable the fabrication of complex shapes and parts. In this study, we synthesize silica composite material that can be applied to digital light processing. The rheological and photopolymeric properties of the synthesized silica composite are investigated in detail. 3D objects are also successfully produced using the silica composite and digital light processing.

Keywords

References

  1. E. Dorre and H. Hubner, Mater. Des., 7, 278, (1986).
  2. R. Janssen, S. Scheppokat and N. Claussen, J. Eur. Ceram. Soc., 28, 1369 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.12.022
  3. L. Ferrage, G. Bertrand, P. Lenormand, D. Grossin and B. Ben-Nissan, J. Aust. Ceram. Soc., 53, 11 (2016).
  4. R. He, W. Liu, Z. Wu, D. An, M. Huang, H. Wu, Q. Jiang, X. Ji, S. Wu and Z. Xie, Ceram. Int., 44, 3412 (2018). https://doi.org/10.1016/j.ceramint.2017.11.135
  5. C. J. Bae and J. W. Halloran, Int. J. Appl. Ceram. Technol., 8, 1289 (2011). https://doi.org/10.1111/j.1744-7402.2010.02578.x
  6. C. Exposito Corcione, A. Greco, F. Mongagna, A. Liccuiulli and A. Maffezzoli, J. Mater. Sci., 40, 4899 (2005). https://doi.org/10.1007/s10853-005-3888-1
  7. G. A, Brady and J. W. Halloran, Rapid Prototyp. J., 3, 61 (1997). https://doi.org/10.1108/13552549710176680
  8. M. L. Griffith and W. Halloran, J. Am. Ceram. Soc., 79, 2601 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb09022.x
  9. J. S. Yun, T. W. Park, Y. H. Jeong and J. H. Cho, Appl. Phys. A, 122, 629 (2016). https://doi.org/10.1007/s00339-016-0157-x
  10. S. K. Song, J. H. Kim, K. S. Hwang and K. R. Ha, Korean Chem., 49, 181 (2011). https://doi.org/10.9713/kcer.2011.49.2.181
  11. Z. Chen, D. Li, W. Zhou and L Wang, Proc IME B J Eng Manufact., 224, 641 (2010). https://doi.org/10.1243/09544054JEM1751
  12. C. Hinczewski, S. Corbel and T. Chartier, J. Eur. Ceram. Soc., 18, 583 (1998). https://doi.org/10.1016/S0955-2219(97)00186-6
  13. K. C. Wu and J. W. Halloran, J. Mater. Sci., 40, 71 (2005). https://doi.org/10.1007/s10853-005-5689-y
  14. T. Chartier, A. Badev, Y. Abouliatim, P. Lebaudy and L. Lecamp, J. Eur. Ceram. Soc., 32, 1625 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.01.010
  15. J. D. Cho, H. T. Ju and J. W. Hong, J. Polym. Sci., Part A: Polym. Chem., 43, 658 (2005). https://doi.org/10.1002/pola.20529