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CERTAIN NEW EXTENSION OF HURWITZ-LERCH ZETA

FUNCTION

WASEEM A. KHAN∗, M. GHAYASUDDIN, MOIN AHMAD

Abstract. In the present research paper, we introduce a further exten-

sion of Hurwitz-Lerch zeta function by using the generalized extended Beta
function defined by Parmar et al. [9]. We investigate its integral represen-

tations, Mellin transform, generating functions and differential formula. In
view of diverse applications of the Hurwitz-Lerch Zeta functions, the results

presented here may be potentially useful in some related research areas.
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1. Introduction

The well known Hurwitz-Lerch zeta function is defined by (see [2], [10], [11]):

Φ(z, s, a) =

∞∑
n=0

zn

(n+ a)s
, (1.1)

(a ∈ C \ Z0; s ∈ C, when | z |< 1;<(s) > 1, when | z |= 1).

Goyal and Laddha [4] and Garg et al. [3] introduced to investigate certain
interesting extensions of the Hurwitz-Lerch Zeta function Φ(z, s, a) in (1.1) which
are defined respectively, by

Φ∗µ(z, s, a) =

∞∑
n=0

(µ)nz
n

n!(n+ a)s
, (1.2)
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(µ ∈ C; a ∈ C \ Z0; s ∈ C, when | z |< 1;<(s− µ) > 1, when | z |= 1)
and

Φλ,µ,ν(z, s, a) =

∞∑
n=0

(λ)n(µ)nz
n

(ν)nn!(n+ a)s
, (1.3)

(λ, µ ∈ C; a ∈ C \ Z0; s ∈ C, when | z |< 1;<(s+ ν − λ− µ) > 1, when | z |= 1).

The following known integral representations of (1.2) and (1.3) are given,
respectively, by

Φ∗µ(z, s, a) =
1

Γ(s)

∫ ∞
0

ts−1e−at

(1− zt)µ
dt =

1

Γ(s)

∫ ∞
0

ts−1e(a−1)t

(1− zt)µ
dt, (1.4)

(<(a) > 0;<(s) > 0 when | z |≤ 1(z 6= 1);<(s) > 1 when z = 1)
and

Φλ,µ,ν(z, s, a) =
1

Γ(s)

∫ ∞
0

ts−1e−at2F1(λ, µ; ν; zet)dt, (1.5)

(<(a) > 0;<(s) > 0 when | z |≤ 1(z 6= 1);<(s) > 1 when z = 1).

Very recently, Parmar et al. [9] introduced and investigated the following
extended Hurwitz-Lerch zeta function:

Φ
(ρ,σ)
λ,µ;γ(z, s, a; p) =

∞∑
n=0

(λ)nB
(ρ,σ)
p (µ+ n, γ − µ)

n!B(µ, γ − µ)

zn

(n+ a)s
, (1.6)

(p ≥ 0,<(ρ) > 0,<(σ) > 0;λ, µ ∈ C; γ, a ∈ C \ Z0; s ∈ C, when | z |< 1;<(s +
γ − λ− µ) > 1, when | z |= 1).

where B
(ρ,σ)
p (x, y) is the extended Beta function defined as follows (see [6]):

B(ρ,σ)
p (x, y) =

∫ 1

0

tx−1(1− t)y−11F1(ρ;σ;
−p

t(1− t)
)dt. (1.7)

They also defined the integral representation of (1.2) by

Φ
(ρ,σ)
λ,µ;γ(z, s, a; p) =

1

Γ(s)

∫ ∞
0

ts−1e−atF (ρ,σ)
p (λ, µ; γ; ze−t)dt. (1.8)

For ρ = σ, (1.6) reduces to the Hurwitz-Lerch zeta function defined by Par-
mar and Raina [8], which further for p = 0, gives the known extension of (1.1)
gives by Garg et al. [3].

Further, Srivastava et al. [13] introduced the following generalizations of the
extended Beta and hypergeometric functions which are defined, respectively, by

B(ρ,σ;m,n)
p (x, y) =

∫ 1

0

tx−1(1− t)y−11F1(ρ;σ;
−p

tm(1− t)n
)dt, (1.9)

(<(σ) ≥ 0; min{<(ρ),<(σ),<(x),<(y)} > 0; min{<(m),<(n)} > 0)
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and

F (ρ,σ;m,n)
p (a, b; c; z) =

∞∑
k=0

(a)kB
(ρ,σ;m,n)
p (b+ n, c− b)
B(b, c− b)

zk

k!
, (1.10)

(| z |< 1; min{<(ρ),<(σ),<(m),<(n)} > 0;<(c) > <(b) > 0;<(p) ≥ 0).

Due to diverse applications of Hurwitz-Lerch zeta functions, several exten-
sions of Φ(z, s, a) have been introduced and investigated by a number of authors
(see, for example [1], [5], [7], [12], [14] etc).

In a sequel of such type of works mentioned above in this paper, we introduce

a further extension of Φ
(ρ,σ)
λ,µ;γ(z, s, a; p) by using the generalized Beta function

defined by Srivastava et al. [13].

2. A new extension of Hurwitz-Lerch Zeta function

In this section, we establish the following new extension of Hurwitz-Lerch
Zeta function:

Φ
(ρ,σ;m,k)
λ,µ;γ (z, s, a; p) =

∞∑
n=0

(λ)nB
(ρ,σ;m,k)
p (µ+ n, γ − µ)

n!B(µ, γ − µ)

zn

(n+ a)s
, (2.1)

(p ≥ 0,<(ρ) > 0,<(σ) > 0,<(m) > 0,<(k) > 0;λ, µ ∈ C; γ, a ∈ C \ Z0; s ∈ C,
when | z |< 1;<(s+ γ − λ− µ) > 1, when | z |= 1).

Where B
(ρ,σ;m,k)
p (x, y) is the generalized Beta function, which is defined by

(see [13]):

B(ρ,σ;m,k)
p (x, y) =

∫ 1

0

tx−1(1− t)y−11F1(ρ;σ;
−p

tm(1− t)k
)dt. (2.2)

He also given the following extension of Gauass hypergeometric function:

F (ρ,σ;m,k)
p (a, b; c; z) =

∞∑
n=0

(a)nB
(ρ,σ;m,k)
p (b+ n, c− b)
B(b, c− b)

zn

n!
. (2.3)

On substituting m = k = 1 in (2.1), we get the extended Hurwitz-Lerch Zeta
function given by (1.6).

Remark 2.1. The generalized new extension of Hurwitz-Lerch Zeta function

Φ
(ρ,σ;m,k)
λ,µ;γ (z, s, a; p) has the following limiting case.

Φ
∗(ρ,σ;m,k)
λ,µ;γ (z, s, a; p) = lim

|λ|−→∞

{
Φ(ρ,σ;m,k)
µ;γ

( z
λ
, s, a; p

)}
=

∞∑
n=0

B
(ρ,σ;m,k)
p (µ+ n, γ − µ)

n!B(µ, γ − µ)

zn

(n+ a)s
, (2.4)
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(p ≥ 0,<(ρ) > 0,<(σ) > 0,<(m) > 0,<(k) > 0;µ ∈ C; γ, a ∈ C \ Z0; s ∈ C,
when | z |< 1;<(s+ γ − µ) > 1, when | z |= 1).

Remark 2.2. On setting m = k = 1, λ = γ = 1 in (2.1), we get another known
result of Hurwitz-Lerch Zeta function, which is defined by (see [7]):

Φ
(ρ,σ;1,1)
1,µ;1 (z, s, a; p) = Φ∗(ρ,σ)µ (z, s, a; p) =

∞∑
n=0

B
(ρ,σ)
p (µ+ n, 1− µ)

n!B(µ, 1− µ)

zn

(n+ a)s
,

(2.5)
(p ≥ 0,<(ρ) > 0,<(σ) > 0;µ ∈ C; γ, a ∈ C \ Z−0 ; s ∈ C, when | z |< 1;<(s+ 1−
µ) > 1, when | z |= 1).

3. Integral representations of Φ
(ρ,σ;m,k)
λ,µ;γ (z, s, a; p)

In this section, we derive the following integral representations of our new
generalized Hurwitz-Lerch Zeta function.

Theorem 3.1. The following integral representation of Φ
(ρ,σ;m,k)
λ,µ;γ (z, s, a; p) holds

true:

Φ
(ρ,σ;m,k)
λ,µ;γ (z, s, a; p) =

1

Γ(s)

∫ ∞
0

ts−1e−atF (ρ,σ;m,k)
p (λ, µ; γ; ze−t)dt. (3.1)

(<(p) ≥ 0,<(ρ) > 0,<(σ) > 0,<(m) > 0,<(k) > 0; p = 0,<(a) > 0;<(s) > 0,
when | z |≤ 1;<(s) > 1, when z = 1).

Proof. We have
1

(n+ a)s
=

1

Γ(s)

∫ ∞
0

ts−1e−(n+a)tdt.

By using the above result in (2.1) and then interchanging the order of summation
and integration (which is valid under the given condition), we get

Φ
(ρ,σ;m,k)
λ,µ;γ (z, s, a; p)

=
1

Γ(s)

∫ ∞
0

ts−1e−at

( ∞∑
n=0

(λ)nB
(ρ,σ;m,k)
p (µ+ γ, γ − µ)

B(µ, γ − µ)

(ze−t)n

n!

)
dt.

In view of definition (2.3), we arrive at the desired result (3.1). �

Theorem 3.2. The following integral representation of Φ
(ρ,σ;m,k)
λ,µ;γ (z, s, a; p) holds

true:

Φ
(ρ,σ;m,k)
λ,µ;γ (z, s, a; p) =

1

Γ(λ)

∫ ∞
0

tλ−1e−tΦ∗(ρ,σ;m,k)µ,γ (zt, s, a; p)dt. (3.2)
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(<(p) ≥ 0,<(ρ) > 0,<(σ) > 0,<(m) > 0,<(k) > 0; p = 0,<(ν) > 0;<(a) >
0;<(s) > 0, when | z |≤ 1;<(s) > 1, when z = 1).

Proof. We have

(λ)n =
1

Γ(λ)

∫ ∞
0

tλ+n−1e−tdt.

By using the above result in (2.1) and then interchanging the order of summation
and integration (which is valid under the given condition), we get

Φ
(ρ,σ;m,k)
λ,µ;γ (z, s, a; p)

=
1

Γ(λ)

∫ ∞
0

tλ−1e−t

( ∞∑
n=0

B
(ρ,σ;m,k)
p (µ+ n, γ − µ)

B(µ, γ − µ)

(zt)n

n!(n+ a)s

)
dt.

Which further on using the definition of (2.4), gives the required result (3.2).
�

4. Mellin Transform

The Mellin transform of the function f(x) is given by

M{f(x)} = φ(r) =

∫ ∞
0

xr−1f(x)dx. (4.1)

Theorem 4.1. For the new extended Hurwitz-Lerch Zeta function Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p),

we have the following Mellin transform representation:

M
{

Φ
(ρ,σ;m,k)
λ,µ;γ (z, s, a; p)

}
=

Γ(ρ,σ)(s)

B(µ, γ − µ)
B(mα+ µ; kα+ γ − µ)Φλ,mα+µ;mα+kα+γ(z, s, a; p). (4.2)

(<(s) > 0,<(mα+ µ) > 0,<(mα+ kα+ γ) > 0, 0 < <(µ) < <(γ)),

where Γ(ρ,σ)(s) and Φλ,µ;γ(z, s, a) are extended Gamma and Hurwitz-Lerch
Zeta function defined by Parmar [7] and Garg et al. [3,p.313], respectively.

Proof. Using the definition of Mellin transform (4.1) on the L.H.S of (4.2) and

then expanding Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p) with the help of (2.1), we get

M
{

Φ
(ρ,σ;m,k)
λ,µ;γ (z, s, a; p)

}
=

∫ ∞
0

pα−1

( ∞∑
n=0

(λ)nB
(ρ,σ;m,k)
p (µ+ n, γ − µ)

n!B(µ, γ − µ)

zn

(n+ a)s

)
dp.
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Now changing the order of summation and integration, we get

M
{

Φ
(ρ,σ;m,k)
λ,µ;γ (z, s, a; p)

}
=

∞∑
n=0

(λ)nz
n

n!(n+ a)sB(µ, γ − µ)

∫ ∞
0

pα−1B(ρ,σ;m,k)
p (µ+ n, γ − µ)dp

=

∞∑
n=0

(λ)nz
n

n!(n+ a)s
B(mα+ µ+ n, γ − µ+ αk)

B(µ, γ − µ)
Γ(ρ,σ)(s).

Now expanding B(mα+ µ+ n, γ − µ+ αk) in terms of Gamma function and
then by using the result Γ(λ+ n) = Γ(λ)(λ)n,

M
{

Φ
(ρ,σ;m,k)
λ,µ;γ (z, s, a; p)

}
=

Γ(ρ,σ)(s)Γ(mα+ µ)Γ(αk + γ − µ)

B(µ, γ − µ)Γ((m+ k)α+ γ)

∞∑
n=0

(λ)n(mα+ µ)n
n!(mα+ kα+ γ)n

zn

(n+ a)s
.

Finally using the definition of Hurwitz-Lerch Zeta function given in [6,p.313],
we are led to the desired result.

�

5. Generating relations

Theorem 5.1. For p ≥ 0, λ ∈ C and | t |< 1, the following generating function
holds true:

∞∑
n=0

(λ)nΦ
(ρ,σ;m,k)
λ+n,µ;γ (z, s, a; p)

tn

n!
= (1− t)−λΦ

(ρ,σ;m,k)
λ,µ;γ

(
z

1− t
, s, a; p

)
. (5.1)

Proof. For convenience, let the left hand side of assertion (5.1) of Theorem 5.1
be denoted by L1. Then by substituting the series expression from (2.1) into L1,
we find that

L1 =

∞∑
n=0

(λ)n

{ ∞∑
r=0

(λ+ n)rB
(ρ,σ;m,k)
p (µ+ k, γ − µ)

B(µ, γ − µ)

zr

r!(r + a)s

}
tn

n!
, (5.2)

which upon changing the order of summation and after a little simplification,
gives

L1 =

∞∑
r=0

(λ)rB
(ρ,σ;m,k)
p (µ+ k, γ − µ)

B(µ, γ − µ)

{ ∞∑
n=0

(λ+ k)n
tn

n!

}
. (5.3)

Now applying the following binomial expansion

(1− λ)−(λ+k) =

∞∑
n=0

(λ+ k)n
tn

n!
, (| t |< 1),
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for evaluating the inner sum in (5.3) and then by using (2.1), we get the
desired assertion (5.1) of Theorem 5.1.

�

Theorem 5.2. For p ≥ 0, λ ∈ C and | t |<| a |; s 6= 1, the following generating
function holds true:

Φ
(ρ,σ;m,k)
λ,µ;γ (z, s, a; p) =

∞∑
n=0

(s)n
n!

Φ
(ρ,σ;m,k)
λ,µ;γ (z, s+ n, a; p) . (5.4)

Proof. Let the left hand side of (5.4) denoted by L2. Then by using (2.1) into
L2, we get

L2 =

∞∑
l=0

(λ)lB
(ρ,σ;m,k)
p (µ+ l, γ − µ)

B(µ, γ − µ)

zl

l!(l + a− t)s

=

∞∑
l=0

(λ)lB
(ρ,σ;m,k)
p (µ+ l, γ − µ)

B(µ, γ − µ)

zl

l!(l + a)s
(1− t

l + a
)−s

=

∞∑
l=0

(λ)lB
(ρ,σ;m,k)
p (µ+ l, γ − µ)

B(µ, γ − µ)

zl

l!(l + a)s

{ ∞∑
n=0

(s)n
n!

(
t

l + a

)n}

=

∞∑
n=0

(s)n
n!

( ∞∑
l=0

(λ)lB
(ρ,σ;m,k)
p (µ+ l, γ − µ)

B(µ, γ − µ)

zl

l!(l + a)s+n

)
tn.

Finally, by making use of (2.1), we get the desired assertion (5.4) of Theorem
5.2.

�

Remark 5.1. On setting k = m = 1, the generating function (5.1) and (5.4)
asserted by Theorem 5.1 and Theorem 5.2, respectively, were derived earlier by
Parmar et al. [9].

6. Derivation of Φ
(ρ,σ;m,k)
λ,µ;γ (z, s, a; p)

For the extended Hurwitz-Lerch Zeta function Φ
(ρ,σ;m,k)
λ,µ;γ (z, s, a; p), we have a

differential formula given in Theorem 6.1.

Theorem 6.1. The following differential formula holds true:

dr

dzr

[
Φ

(ρ,σ;m,k)
λ,µ;γ (z, s, a; p)

]
=

(µ)r(λ)r
(γ)r

Φ
(ρ,σ;m,k)
λ+r,µ+r;γ+r(z, s, a+ r; p), (6.1)

where r ∈ N = {1, 2, 3, · · · }.
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Proof. Taking the derivative of Φ
(ρ,σ;m,k)
λ,µ;γ (z, s, a; p) with respect to z, we get

d

dz

[
Φ

(ρ,σ;m,k)
λ,µ;γ (z, s, a; p)

]
=

d

dz

[ ∞∑
n=0

(λ)nB
(ρ,σ;m,k)
p (µ+ n, γ − µ)

n!B(µ, γ − µ)

zn

(n+ a)s

]

=

∞∑
n=1

(λ)nB
(ρ,σ;m,k)
p (µ+ n, γ − µ)

(n− 1)!B(µ, γ − µ)

zn−1

(n+ a)s
.

Replacing n by n+ 1, we get

d

dz

[
Φ

(ρ,σ;m,k)
λ,µ;γ (z, s, a; p)

]
=
µλ

γ

∞∑
n=0

(λ+ 1)nB
(ρ,σ;m,k)
p (µ+ n+ 1, γ − µ)

n!B(µ+ 1, γ − µ)

zn

(n+ 1 + a)s

=
µλ

γ
Φ

(ρ,σ;m,k)
λ+1,µ+1;γ+1(z, s, a+ 1; p).

Recursive application of this procedure yields us the desired result (6.1).
�
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