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ON THE EXTREMAL TYPE I BINARY SELF-DUAL CODES

WITH NEAR-MINIMAL SHADOW
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Abstract. In this paper, we define near-minimal shadow and study the

existence problem of extremal Type I binary self-dual codes with near-

minimal shadow. We prove that there is no such codes of length n =
24m + 2(m ≥ 0), n = 24m + 4(m ≥ 9), n = 24m + 6(m ≥ 21), and

n = 24m + 10(m ≥ 87).
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1. Introduction

A binary linear code C is a subspace of a vector space GF (2)n and the vectors
in C are called codewords. The weight of a codeword u = (u1, u2, . . . , un) in
GF (2)n is the number of nonzero uj . The minimum weight of C is the smallest
nonzero weight of any codeword in C. If the dimension of C is k and the
minimum weight in C is d, we say C is an [n, k, d] code.

The scalar product in GF (2)n is defined by

(u, v) =

n∑
j=1

ujvj , (1)

where the sum is evaluated in GF (2). The dual code of a binary linear code C
is defined by

C⊥ = {v ∈ GF (2)n : (v, c) = 0 for all c ∈ C}. (2)

If C ⊆ C⊥, we say C is self-orthogonal and if C = C⊥, we say C is self-dual.
A binary code is even if all its codewords have even weight. Clearly self-dual

binary codes are even. In addition, some of these codes have all codewords of
weight divisible by 4. A self-dual code with all codewords of weight divisible
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by 4 is called doubly-even or Type II; a self-dual code with some codeword of
weight not divisible by 4 is called singly-even or Type I. Bounds on the minimum
distance of binary self-dual codes were given in [10].

Theorem 1.1. ([10]) Let C be an [n, n/2, d] binary self-dual code. Then d ≤
4[n/24] + 4 if n 6≡ 22(mod 24). If n ≡ 22(mod 24), then d ≤ 4[n/24] + 6, and if
equality holds, C can be obtained by shortening a Type II code of length n + 2.
If 24|n and d = 4[n/24] + 4, then C is Type II.

A code meeting the bound of Theorem 1.1, i.e., equality holds in the bound,
is called extremal. From Theorem 1.1, note that there is no extremal Type I
code of length n = 24m (m ≥ 1). The proof of Theorem 1.1 when the code is
Type I used the concept of the shadow. In [5], the shadow code of a code was
introduced. The shadow code of a self-dual code C is defined as follows. Let
C(0) be the subset of C consisting of all codewords whose weights are multiple
of 4, and let C(2) = C\C(0). The shadow code of C is defined by

S = S(C) = {u ∈ GF (2)n : (u, v) = 0 for all v ∈ C(0), (u, v) = 1 for all v ∈ C(2)}.
(3)

Elkies studied the minimum weight s of the shadow code S [11]. He achieved

the following things. First, s ≤ n
2 . Second, s = n

2 if and only if C =
⊕n/2

i=1 C2,
where C2 is the [2, 1, 2] binary code. Third, for s = n/2 − 4, he classified the
corresponding codes and proved that n ≤ 22.

Bachoc and Gaborit [1] studied the minimum weight d of C and the minimum
weight s of S simultaneously, and they showed that 2d+s ≤ n

2 +4, unless n ≡ 22
(mod 24) and d = 4[n/24] + 6, in which 2d + s = n

2 + 8. If equality holds, i.e.,
2d+ s = n

2 + 4(or 2d+ s = n
2 + 8), then the codes are called s-extremal. Elkies’

study corresponds to s-extremal codes with d = 2 and d = 4. Bachoc and
Gaborit also studied s-extremal codes with d = 6.

Elkies, Bachoc, and Gaborit studied, in some sense, large value of minimum
weight s of S. On the other hand, Bouyuklieva and Willems made a research
for the smallest value s of S [4].

Definition 1.2. Let C be a Type I binary self-dual code of length n = 24m+
8`+ 2r with ` = 0, 1, 2 and r = 0, 1, 2, 3. Then C is a code with minimal shadow
if:

(1) d(S) = r for r > 0; and
(2) d(S) = 4 for r = 0,

where d(S) is the minimum weight of S.

They proved nonexistence of extremal self-dual codes with minimal shadow.
More specific, they proved that extremal Type I binary self-dual codes of lengths
n = 24m + 2, 24m + 4, 24m + 6, 24m + 10 and 24m + 22 with minimal shadow
do not exist. They also proved that there are no extremal Type I binary self-
dual codes of length n with minimal shadow if n = 24m + 8(m ≥ 53), n =
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24m + 12(m ≥ 142), n = 24m + 14(m ≥ 146), n = 24m + 16(m ≥ 164), and
n = 24m+ 18(m ≥ 157).

Bouyuklieva, Harada, and Munemasa studied near-extremal binary self-dual
codes with minimal shadow [3].

Definition 1.3. Let C be an [n, n/2, d] binary self-dual code. Then C is a
near-extremal code if:

(1) d = 4[n/24] + 2 for n 6≡ 22 (mod 24); and
(2) d = 4[n/24] + 4 for n ≡ 22 (mod 24).

They proved that there are no near-extremal Type I binary self-dual codes of
length n with minimal shadow if n = 24m+2(m ≥ 155), n = 24m+4(m ≥ 156),
and n = 24m+ 10(m ≥ 160). Recently, the author [7] also proved that there are
no near-extremal Type I binary self-dual codes of length n with minimal shadow
if n = 24m+ 2(m ≥ 323).

In this paper, we study near-minimal shadow. In the following, we give the
definition of a code with near-minimal shadow.

Definition 1.4. Let C be a Type I binary self-dual code of length n = 24m+
8` + 2r with ` = 0, 1, 2 and r = 0, 1, 2, 3. Then C is a code with near-minimal
shadow if:

(1) d(S) = 4 + r for r > 0; and
(2) d(S) = 8 for r = 0,

where d(S) is the minimum weight of S.

The main result of this paper is the following theorem.

Theorem 1.5. There are no extremal Type I binary self-dual codes of length n
with near-minimal shadow if

(1) n = 24m+ 2;
(2) n = 24m+ 4 and m ≥ 9;
(3) n = 24m+ 6 and m ≥ 21;
(4) n = 24m+ 10 and m ≥ 87.

We summarize the results so far in Table 1. In the table, we give the results
of non-existence of extremal(or near-extremal) binary self-dual codes with min-
imal(or near-minimal) shadow of length n = 24m + p, (0 ≤ p ≤ 22). The first
row and the fifth row of the table represent the value p, and the first column
of the table represents extremal(or near-extremal) w.r.t. the minimum weight
d of C and minimal(or near-minimal) w.r.t. the minimum weight s of S. More
specifically, the pair (ext, min) corresponds to the case d is extremal and s is
minimal, the pair (n-ext, min) corresponds to the case d is near-extremal and s
is minimal, and the pair (ext, n-min) corresponds to the case d is extremal and
s is near-minimal. In the table, ‘x’ represents the non-existence of the corre-
sponding codes. ‘≥ number’ represents the non-existence of the corresponding
codes if m ≥ number. ‘*’ represents that there is no Type I extremal codes of
length n = 24m.
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Table 1. Non-existence of extremal(or near-extremal) binary
self-dual codes with minimal(or near-minimal) shadow of length
n = 24m+ p

(d, s)\p 0 2 4 6 8 10

(ext, min) * x x x ≥ 53 x
(n-ext, min) ≥ 323 ≥ 155 ≥ 156 ≥ 160
(ext, n-min) * x ≥ 9 ≥ 21 ≥ 87

(d, s)\p 12 14 16 18 20 22

(ext, min) ≥ 142 ≥ 146 ≥ 164 ≥ 157 x
(n-ext, min)
(ext, n-min)

This paper is organized by the following. In section 2, we give the proof of
Theorem 1.5. In section 3, we give the summary of this paper.

2. Extremal Type I binary self-dual codes with near-minimal shadow

In this section, we give the proof of Theorem 1.5. The weight enumerator of
a code is given by

WC(x, y) =

n∑
i=0

Aix
n−iyi, (4)

where there are Ai codewords of weight i in C. The following lemma is needed
in this paper.

Lemma 2.1. [5] Let C be a Type I binary self-dual code of length n and minimum
weight d. Let S(y) =

∑n
i=0 biy

i be the weight enumerator of S(C). Then

(1) b0 = 0; and
(2) bi ≤ 1 for i < d/2.

Let C be a Type I binary self-dual code of length n = 24m + 8` + 2r where
` = 0, 1, 2 and r = 0, 1, 2, 3. By Gleason’s theorem [2, 6, 9], we can write the
weight enumerator of C.

WC(x, y) =

[n/8]∑
i=0

ci(x
2 + y2)n/2−4i{x2y2(x2 − y2)2}i, (5)

for suitable constants ci. Using the shadow code theory [5], we can write the
weight enumerator of shadow code S(C),

WS(x, y) =

[n/8]∑
i=0

(−1)i2n/2−6ici(xy)n/2−4i(x4 − y4)2i. (6)
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We rewrite Eqn. (5) and Eqn. (6) as the following form

WC(1, y) =

12m+4`+r∑
j=0

ajy
2j =

3m+`∑
i=0

ci(1 + y2)12m+4`+r−4i{y2(1− y2)2}i, (7)

WS(1, y) =

6m+2`∑
j=0

bjy
4j+r =

3m+`∑
i=0

(−1)ici 212m+4`+r−6iy12m+4`+r−4i(1− y4)2i.

(8)
Note that all aj and bj must be nonnegative integers. One can write ci as a
linear combination of the aj for 0 ≤ j ≤ i, and one can write ci as a linear
combination of bj for 0 ≤ j ≤ 3m+ `− i as the following form

ci =

i∑
j=0

αijaj =

3m+`−i∑
j=0

βijbj , (9)

for suitable constants αij and βij .
In our computation, we need to calculate αi0 and βij . The following formula

can be found in [10]. For i > 0,

αi0 = − n
2i

[
coeff. of yi−1 in (1 + y)−(n/2)−1+4i(1− y)−2i

]
(10)

and

βij = (−1)i2−
n
2 +6i k − j

i

(
k + i− j − 1

k − i− j

)
, (11)

where k = 3m+ `. Note that a0 = c0 = α00 = 1.
In [3], there is a calculation formula for αi0. We extend the formula in the

following lemma.

Lemma 2.2. Let 1 ≤ i ≤ 3m+ `. Then we have

αi,0 =


− n

2i

n
2 +1−6i∑

t=0,t+i is odd

(−1)t
(n

2 + 1− 6i

t

)(n−7i−t−1
2

i−t−1
2

)
, if n

2 + 1− 6i ≥ 0;

− n
2i

[ i−1
2 ]∑

t=0

(n
2 − 4i+ t

t

)(
−n

2 + 7i− 2t− 3

i− 2t− 1

)
, otherwise.

(12)

Proof. If n
2 +1−6i ≥ 0, then the proof is given in [3]. Suppose that n

2 +1−6i < 0.
From Eqn. (10), we have

αi0 = − n
2i

[
coeff. of yi−1 in (1 + y)−(n/2)−1+4i(1− y)−2i

]
. (13)

And

(1 + y)−(n/2)−1+4i(1− y)−2i = (1− y2)−n/2−1+4i(1− y)n/2+1−6i (14)
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=

[∑
0≤t

(n
2 + 1− 4i+ t− 1

t

)
y2t
]
×
[∑

0≤j

(
−n

2 − 1 + 6i+ j − 1

j

)
yj
]
(15)

=
∑
0≤t,j

(n
2 + 1− 4i+ t− 1

t

)(
−n

2 − 1 + 6i+ j − 1

j

)
y2t+j . (16)

Let 2t+ j = i− 1. Then j = i− 1− 2t. From the above, we have the following
result.

αi0 = − n
2i

∑
0≤t≤[ i−1

2 ]

(n
2 + 1− 4i+ t− 1

t

)(
−n

2 − 1 + 6i+ i− 1− 2t− 1

i− 1− 2t

)

= − n
2i

∑
0≤t≤[ i−1

2 ]

(n
2 − 4i+ t

t

)(
−n

2 + 7i− 2t− 3

i− 2t− 1

)
. (17)

�

Let C be an extremal Type I binary self-dual code with near-minimal shadow
of length n = 24m + 8` + 2r. Since C is extremal, we have a0 = 1, a1 = a2 =
· · · = a2m+1 = 0.

2.1. The case n = 24m + 2. Suppose that r = 1. By Lemma 2.1, we have
b0 = 0, b1 = 1 if m ≥ 2. Also we have b2 = b3 = · · · = bm−1 = 0. Otherwise, S
would contain a vector v of weight less than or equal to 4m− 4 + 1, and if u ∈ S
is a vector of weight 5, then u+ v ∈ C with wt(u+ v) ≤ 4m+ 2, a contradiction
to the minimum distance of C.

Using Eqn. (9) and the above discussion, we have the following.

ci =

i∑
j=0

αijaj = αi0(0 ≤ i ≤ 2m+ 1) (18)

and

ci =

3m+`−i∑
j=0

βijbj = βi1 +

3m+`−i∑
j=2

βijbj = βi1(2m+ `+ 1 ≤ i ≤ 3m+ `− 1). (19)

Note that c3m+` = 0.
Now we prove the first part of Theorem 1.5. Suppose that ` = 0. Then

n = 24m+ 2. If m = 0, 1, then the code length n = 2, 26. For this code length,
there is no extremal code [8]. Now suppose that m ≥ 2. From Eqn. (18) and
Eqn. (19), we have

α2m+1,0 = β2m+1,1. (20)

From Eqn. (10) and Eqn. (11), we have

α2m+1,0 = − (12m+ 1)(56m+ 4)

(2m+ 1)(m− 1)

(
5m− 1

m− 2

)
(21)
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and

β2m+1,1 = −25 × 3m− 1

2m+ 1

(
5m− 1

m− 2

)
. (22)

From Eqn. (20), (21), and (22), we have the following equation:

144m2 + 58m− 7 = 0. (23)

The equation has no integer solution. Therefore the corresponding code does
not exist. This completes the first part of Theorem 1.5.

2.2. The case n = 24m+10. Now we prove the fourth part of Theorem 1.5.
Suppose that ` = 1. Then n = 24m + 10. If m = 0, 1, then the code length
n = 10, 34. For this code length, there is no extremal code [8]. Now suppose
that m ≥ 2. From Eqn. (18) and Eqn. (19), we have

c2m+1 = α2m+1,0 = β2m+1,1 + β2m+1,mbm. (24)

Therefore, we get:

bm =
α2m+1,0 − β2m+1,1

β2m+1,m
. (25)

From Eqn. (10) and Eqn. (11) we have

α2m+1,0 = −12m+ 5

2m+ 1

(
5m+ 1

m

)
(26)

and

β2m+1,m = −2, β2m+1,1 = −2× 3m

2m+ 1

(
5m

m− 1

)
. (27)

Therefore, we get:

bm =
27m+ 5

2× (4m+ 1)

(
5m

m

)
. (28)

From Eqn. (18) and Eqn. (19), we have

c2m = α2m,0 = β2m,1 + β2m,mbm + β2m,m+1bm+1. (29)

Therefore, we get:

bm+1 =
α2m,0 − β2m,1 − β2m,mbm

β2m,m+1
. (30)

From Eqn. (10) and Eqn. (11), we have

α2m,0 =
4(12m+ 5)(5m+ 1)(5m+ 2)(32m2 + 19m+ 3)

(4m+ 1)(4m+ 2)(4m+ 3)(4m+ 4)(4m+ 5)

(
5m

m

)
(31)

and

β2m,m+1 = 2−5, β2m,1 =
3

26

(
5m− 1

m

)
=

3

80

(
5m

m

)
, β2m,m =

2m+ 1

24
. (32)

Therefore, we get:

bm+1 = − 8(5m+ 1)f(m)

5(4m+ 1)(4m+ 2)(4m+ 3)(4m+ 4)(4m+ 5)

(
5m

m

)
, (33)
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where

f(m) = 1728m5 − 146560m4 − 205500m3 − 105920m2 − 23763m− 1935. (34)

We can see that f(m) > 0 if m ≥ 87. Therefore, if m ≥ 87, then bm+1 < 0. This
is a contradiction. This completes the fourth part of Theorem 1.5.

Remark 2.1. We made computation for n = 24m + 10, and found that some
of coefficients of WS(1, y) are not integer if m = 2, 4, 6, 8, 12, 16, 18, 24, 32,
34, 36, 38, 48, 50, 64, 66, 68, 70, 72, 76. Therefore for the corresponding code
length, there is no extremal code with near-minimal shadow.

2.3. The case n = 24m+4. Now we prove the second part of Theorem 1.5.
Suppose that r = 2. By Lemma 2.1, we have b0 = 0, b1 = 1 if m ≥ 3. Also
we have b2 = b3 = · · · = bm−2 = 0. Otherwise, S would contain a vector v of
weight less than or equal to 4m−8+2, and if u ∈ S is a vector of weight 6, then
u+ v ∈ C with wt(u+ v) ≤ 4m, a contradiction to the minimum distance of C.

Using Eqn. (9) and the above discussion, we have the following.

ci =

i∑
j=0

αijaj = αi0(0 ≤ i ≤ 2m+ 1) (35)

and

ci =

3m+`−i∑
j=0

βijbj = βi1 +

3m+`−i∑
j=2

βijbj = βi1(2m+ `+ 2 ≤ i ≤ 3m+ `− 1). (36)

Note that c3m+` = 0.
Suppose that ` = 0. Then n = 24m+ 4. If m = 0, 1, 2, then the code length

n = 4, 28, 52. For this code length, there is no extremal code [8]. Now suppose
that m ≥ 3. From Eqn. (35) and Eqn. (36), we have

c2m+1 = α2m+1,0 = β2m+1,1 + β2m+1,m−1bm−1. (37)

Therefore, we get:

bm−1 =
α2m+1,0 − β2m+1,1

β2m+1,m−1
. (38)

From Eqn. (10) and Eqn. (11), we have

α2m+1,0 = −2(6m+ 1)(8m+ 1)

m(2m+ 1)

(
5m

m− 1

)
(39)

and

β2m+1,m−1 = −24, β2m+1,1 = −24 × 3m− 1

2m+ 1

(
5m− 1

m− 2

)
. (40)

Therefore, we get:

bm−1 =
(6m+ 1)(8m+ 1)

8m(2m+ 1)

(
5m

m− 1

)
− 3m− 1

2m+ 1

(
5m− 1

m− 2

)
. (41)
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From Eqn. (35) and Eqn. (36), we have

c2m = α2m,0 = β2m,1 + β2m,m−1bm−1 + β2m,mbm. (42)

Therefore, we get:

bm =
α2m,0 − β2m,1 − β2m,m−1bm−1

β2m,m
. (43)

From Eqn. (10) and Eqn. (11), we have

α2m,0 =
(6m+ 1)(8m+ 1)

m(2m+ 1)

(
5m

m− 1

)
(44)

and

β2m,m =
1

4
, β2m,1 =

3m− 1

8m

(
5m− 2

m− 1

)
, β2m,m−1 =

2m+ 1

2
. (45)

Therefore, we get:

bm = − 15(5m− 2)!f(m)

4(2m+ 1)(4m+ 1)!(m− 1)!
, (46)

where

f(m) = 144m4 − 1156m3 − 108m2 + 39m+ 5. (47)

We can see that f(m) > 0 if m ≥ 9. Therefore, if m ≥ 9, then bm < 0. This is
a contradiction.

Remark 2.2. We made computation for n = 24m + 4, and found that some
of coefficients of WS(1, y) are not integer if m = 3, 4, 5, 6, 8. Therefore for the
corresponding code length, there is no extremal code with near-minimal shadow.
The only remaining case is m = 7.

2.4. The case n = 24m+6. Now we prove the third part of Theorem 1.5.
Suppose that r = 3 and n 6= 24m + 22. Then b0 = 0, b1 = 1 if m ≥ 3. Also
we have b2 = b3 = · · · = bm−2 = 0. Otherwise, S would contain a vector v of
weight less than or equal to 4m−8+3, and if u ∈ S is a vector of weight 7, then
u+ v ∈ C with wt(u+ v) ≤ 4m+ 2, a contradiction to the minimum distance of
C.

Using Eqn. (9) and the above discussion, we have the following.

ci =

i∑
j=0

αijaj = αi0(0 ≤ i ≤ 2m+ 1) (48)

and

ci =

3m+`−i∑
j=0

βijbj = βi1 +

3m+`−i∑
j=2

βijbj = βi1(2m+ `+ 2 ≤ i ≤ 3m+ `− 1). (49)

Note that c3m+` = 0.
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Suppose that ` = 0. Then n = 24m+ 6. If m = 0, 1, 2, then the code length
n = 6, 30, 54. For this code length, there is no extremal code [8]. Now suppose
that m ≥ 3. From Eqn. (48) and Eqn. (49), we have

c2m+1 = α2m+1,0 = β2m+1,1 + β2m+1,m−1bm−1. (50)

Therefore, we get:

bm−1 =
α2m+1,0 − β2m+1,1

β2m+1,m−1
. (51)

From Eqn. (10) and Eqn. (11), we have

α2m+1,0 = −3(4m+ 1)(6m+ 1)

m(2m+ 1)

(
5m

m− 1

)
(52)

and

β2m+1,m−1 = −23, β2m+1,1 = −23 × 3m− 1

2m+ 1

(
5m− 1

m− 2

)
. (53)

Therefore, we get:

bm−1 =
3(4m+ 1)(6m+ 1)

8m(2m+ 1)

(
5m

m− 1

)
− 3m− 1

2m+ 1

(
5m− 1

m− 2

)
. (54)

From Eqn. (48) and Eqn. (49), we have

c2m = α2m,0 = β2m,1 + β2m,m−1bm−1 + β2m,mbm. (55)

Therefore, we get:

bm =
α2m,0 − β2m,1 − β2m,m−1bm−1

β2m,m
. (56)

From Eqn. (10) and Eqn. (11), we have

α2m,0 =
24m+ 6

m

{(
5m+ 2

m− 1

)
+

(
5m+ 1

m− 2

)}
(57)

and

β2m,m =
1

8
, β2m,1 =

3m− 1

16m

(
5m− 2

m− 1

)
, β2m,m−1 =

2m+ 1

4
. (58)

Therefore, we get:

bm = − 5(5m− 2)!f(m)

2(4m+ 3)!(m− 1)!
, (59)

where

f(m) = 2688m5 − 53168m4 − 21900m3 − 28m2 + 837m+ 87. (60)

We can see that f(m) > 0 if m ≥ 21. Therefore, if m ≥ 21, then bm < 0. This
is a contradiction.

Remark 2.3. We made computation for n = 24m+ 6, and found that some of
coefficients of WS(1, y) are not integer if 3 ≤ m ≤ 20 except m = 7, 13, 14, 15.
Therefore for the corresponding code length, there is no extremal code with
near-minimal shadow. The only remaining cases are m = 7, 13, 14, 15.
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3. Summary

In this paper, we gave the definition of near-minimal shadow and proved that
there is no extremal Type I binary self-dual codes with near-minimal shadow of
length n = 24m + 2(m ≥ 0), n = 24m + 4(m ≥ 9), n = 24m + 6(m ≥ 21), and
n = 24m + 10(m ≥ 87). We have also considered near-extremal Type I binary
self-dual codes with near-minimal shadow. But we can not obtain the similar
results. In the future work, it is worth while to improve Table 1.

Acknowledgment: The author would like to thank the referee for a lot of
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