ON THE EXTREMAL TYPE I BINARY SELF-DUAL CODES WITH NEAR-MINIMAL SHADOW

SUNGHYU HAN

Abstract

In this paper, we define near-minimal shadow and study the existence problem of extremal Type I binary self-dual codes with nearminimal shadow. We prove that there is no such codes of length $n=$ $24 m+2(m \geq 0), n=24 m+4(m \geq 9), n=24 m+6(m \geq 21)$, and $n=24 m+10(m \geq 87)$.

AMS Mathematics Subject Classification : 94B05.

Key words and phrases : binary codes, extremal codes, minimal shadow, near-minimal shadow, self-dual codes.

1. Introduction

A binary linear code C is a subspace of a vector space $G F(2)^{n}$ and the vectors in C are called codewords. The weight of a codeword $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ in $G F(2)^{n}$ is the number of nonzero u_{j}. The minimum weight of C is the smallest nonzero weight of any codeword in C. If the dimension of C is k and the minimum weight in C is d, we say C is an $[n, k, d]$ code.

The scalar product in $G F(2)^{n}$ is defined by

$$
\begin{equation*}
(u, v)=\sum_{j=1}^{n} u_{j} v_{j} \tag{1}
\end{equation*}
$$

where the sum is evaluated in $G F(2)$. The dual code of a binary linear code C is defined by

$$
\begin{equation*}
C^{\perp}=\left\{v \in G F(2)^{n}:(v, c)=0 \text { for all } c \in C\right\} \tag{2}
\end{equation*}
$$

If $C \subseteq C^{\perp}$, we say C is self-orthogonal and if $C=C^{\perp}$, we say C is self-dual.
A binary code is even if all its codewords have even weight. Clearly self-dual binary codes are even. In addition, some of these codes have all codewords of weight divisible by 4 . A self-dual code with all codewords of weight divisible

[^0]by 4 is called doubly-even or Type II; a self-dual code with some codeword of weight not divisible by 4 is called singly-even or Type I. Bounds on the minimum distance of binary self-dual codes were given in [10].

Theorem 1.1. ([10]) Let C be an $[n, n / 2, d]$ binary self-dual code. Then $d \leq$ $4[n / 24]+4$ if $n \not \equiv 22(\bmod 24)$. If $n \equiv 22(\bmod 24)$, then $d \leq 4[n / 24]+6$, and if equality holds, C can be obtained by shortening a Type II code of length $n+2$. If $24 \mid n$ and $d=4[n / 24]+4$, then C is Type II.

A code meeting the bound of Theorem 1.1, i.e., equality holds in the bound, is called extremal. From Theorem 1.1, note that there is no extremal Type I code of length $n=24 m(m \geq 1)$. The proof of Theorem 1.1 when the code is Type I used the concept of the shadow. In [5], the shadow code of a code was introduced. The shadow code of a self-dual code C is defined as follows. Let $C^{(0)}$ be the subset of C consisting of all codewords whose weights are multiple of 4 , and let $C^{(2)}=C \backslash C^{(0)}$. The shadow code of C is defined by
$S=S(C)=\left\{u \in G F(2)^{n}:(u, v)=0\right.$ for all $v \in C^{(0)},(u, v)=1$ for all $\left.v \in C^{(2)}\right\}$.
Elkies studied the minimum weight s of the shadow code S [11]. He achieved the following things. First, $s \leq \frac{n}{2}$. Second, $s=\frac{n}{2}$ if and only if $C=\bigoplus_{i=1}^{n / 2} C_{2}$, where C_{2} is the $[2,1,2]$ binary code. Third, for $s=n / 2-4$, he classified the corresponding codes and proved that $n \leq 22$.

Bachoc and Gaborit [1] studied the minimum weight d of C and the minimum weight s of S simultaneously, and they showed that $2 d+s \leq \frac{n}{2}+4$, unless $n \equiv 22$ $(\bmod 24)$ and $d=4[n / 24]+6$, in which $2 d+s=\frac{n}{2}+8$. If equality holds, i.e., $2 d+s=\frac{n}{2}+4$ (or $2 d+s=\frac{n}{2}+8$), then the codes are called s-extremal. Elkies' study corresponds to s-extremal codes with $d=2$ and $d=4$. Bachoc and Gaborit also studied s-extremal codes with $d=6$.

Elkies, Bachoc, and Gaborit studied, in some sense, large value of minimum weight s of S. On the other hand, Bouyuklieva and Willems made a research for the smallest value s of $S[4]$.

Definition 1.2. Let C be a Type I binary self-dual code of length $n=24 m+$ $8 \ell+2 r$ with $\ell=0,1,2$ and $r=0,1,2,3$. Then C is a code with minimal shadow if:
(1) $d(S)=r$ for $r>0$; and
(2) $d(S)=4$ for $r=0$,
where $d(S)$ is the minimum weight of S.
They proved nonexistence of extremal self-dual codes with minimal shadow. More specific, they proved that extremal Type I binary self-dual codes of lengths $n=24 m+2,24 m+4,24 m+6,24 m+10$ and $24 m+22$ with minimal shadow do not exist. They also proved that there are no extremal Type I binary selfdual codes of length n with minimal shadow if $n=24 m+8(m \geq 53), n=$
$24 m+12(m \geq 142), n=24 m+14(m \geq 146), n=24 m+16(m \geq 164)$, and $n=24 m+18(m \geq 157)$.

Bouyuklieva, Harada, and Munemasa studied near-extremal binary self-dual codes with minimal shadow [3].
Definition 1.3. Let C be an $[n, n / 2, d]$ binary self-dual code. Then C is a near-extremal code if:
(1) $d=4[n / 24]+2$ for $n \not \equiv 22(\bmod 24)$; and
(2) $d=4[n / 24]+4$ for $n \equiv 22(\bmod 24)$.

They proved that there are no near-extremal Type I binary self-dual codes of length n with minimal shadow if $n=24 m+2(m \geq 155)$, $n=24 m+4(m \geq 156)$, and $n=24 m+10(m \geq 160)$. Recently, the author [7] also proved that there are no near-extremal Type I binary self-dual codes of length n with minimal shadow if $n=24 m+2(m \geq 323)$.

In this paper, we study near-minimal shadow. In the following, we give the definition of a code with near-minimal shadow.
Definition 1.4. Let C be a Type I binary self-dual code of length $n=24 m+$ $8 \ell+2 r$ with $\ell=0,1,2$ and $r=0,1,2,3$. Then C is a code with near-minimal shadow if:
(1) $d(S)=4+r$ for $r>0$; and
(2) $d(S)=8$ for $r=0$,
where $d(S)$ is the minimum weight of S.
The main result of this paper is the following theorem.
Theorem 1.5. There are no extremal Type I binary self-dual codes of length n with near-minimal shadow if
(1) $n=24 m+2$;
(2) $n=24 m+4$ and $m \geq 9$;
(3) $n=24 m+6$ and $m \geq 21$;
(4) $n=24 m+10$ and $m \geq 87$.

We summarize the results so far in Table 1. In the table, we give the results of non-existence of extremal(or near-extremal) binary self-dual codes with minimal(or near-minimal) shadow of length $n=24 m+p,(0 \leq p \leq 22)$. The first row and the fifth row of the table represent the value p, and the first column of the table represents extremal(or near-extremal) w.r.t. the minimum weight d of C and minimal(or near-minimal) w.r.t. the minimum weight s of S. More specifically, the pair (ext, min) corresponds to the case d is extremal and s is minimal, the pair (n-ext, min) corresponds to the case d is near-extremal and s is minimal, and the pair (ext, n-min) corresponds to the case d is extremal and s is near-minimal. In the table, ' x ' represents the non-existence of the corresponding codes. ' \geq number' represents the non-existence of the corresponding codes if $m \geq$ number. ${ }^{*} *$ represents that there is no Type I extremal codes of length $n=24 m$.

Table 1. Non-existence of extremal(or near-extremal) binary self-dual codes with minimal(or near-minimal) shadow of length $n=24 m+p$

$(d, s) \backslash p$	0	2	4	6	8	10
$($ ext, min)	$*$	x	x	x	≥ 53	x
$(\mathrm{n}$-ext, $\min)$	≥ 323	≥ 155	≥ 156			≥ 160
$($ ext, $\mathrm{n}-\mathrm{min})$	$*$	x	≥ 9	≥ 21		≥ 87
$(d, s) \backslash p$	12	14	16	18	20	22
$($ ext $\min)$	≥ 142	≥ 146	≥ 164	≥ 157		x
$(\mathrm{n}$-ext, min)						
$($ ext, $\mathrm{n}-\min)$						

This paper is organized by the following. In section 2, we give the proof of Theorem 1.5. In section 3, we give the summary of this paper.

2. Extremal Type I binary self-dual codes with near-minimal shadow

In this section, we give the proof of Theorem 1.5. The weight enumerator of a code is given by

$$
\begin{equation*}
W_{C}(x, y)=\sum_{i=0}^{n} A_{i} x^{n-i} y^{i} \tag{4}
\end{equation*}
$$

where there are A_{i} codewords of weight i in C. The following lemma is needed in this paper.

Lemma 2.1. [5] Let C be a Type I binary self-dual code of length n and minimum weight d. Let $S(y)=\sum_{i=0}^{n} b_{i} y^{i}$ be the weight enumerator of $S(C)$. Then
(1) $b_{0}=0$; and
(2) $b_{i} \leq 1$ for $i<d / 2$.

Let C be a Type I binary self-dual code of length $n=24 m+8 \ell+2 r$ where $\ell=0,1,2$ and $r=0,1,2,3$. By Gleason's theorem $[2,6,9]$, we can write the weight enumerator of C.

$$
\begin{equation*}
W_{C}(x, y)=\sum_{i=0}^{[n / 8]} c_{i}\left(x^{2}+y^{2}\right)^{n / 2-4 i}\left\{x^{2} y^{2}\left(x^{2}-y^{2}\right)^{2}\right\}^{i} \tag{5}
\end{equation*}
$$

for suitable constants c_{i}. Using the shadow code theory [5], we can write the weight enumerator of shadow code $S(C)$,

$$
\begin{equation*}
W_{S}(x, y)=\sum_{i=0}^{[n / 8]}(-1)^{i} 2^{n / 2-6 i} c_{i}(x y)^{n / 2-4 i}\left(x^{4}-y^{4}\right)^{2 i} \tag{6}
\end{equation*}
$$

We rewrite Eqn. (5) and Eqn. (6) as the following form

$$
\begin{gather*}
W_{C}(1, y)=\sum_{j=0}^{12 m+4 \ell+r} a_{j} y^{2 j}=\sum_{i=0}^{3 m+\ell} c_{i}\left(1+y^{2}\right)^{12 m+4 \ell+r-4 i}\left\{y^{2}\left(1-y^{2}\right)^{2}\right\}^{i} \tag{7}\\
W_{S}(1, y)=\sum_{j=0}^{6 m+2 \ell} b_{j} y^{4 j+r}=\sum_{i=0}^{3 m+\ell}(-1)^{i} c_{i} 2^{12 m+4 \ell+r-6 i} y^{12 m+4 \ell+r-4 i}\left(1-y^{4}\right)^{2 i} \tag{8}
\end{gather*}
$$

Note that all a_{j} and b_{j} must be nonnegative integers. One can write c_{i} as a linear combination of the a_{j} for $0 \leq j \leq i$, and one can write c_{i} as a linear combination of b_{j} for $0 \leq j \leq 3 m+\ell-i$ as the following form

$$
\begin{equation*}
c_{i}=\sum_{j=0}^{i} \alpha_{i j} a_{j}=\sum_{j=0}^{3 m+\ell-i} \beta_{i j} b_{j} \tag{9}
\end{equation*}
$$

for suitable constants $\alpha_{i j}$ and $\beta_{i j}$.
In our computation, we need to calculate $\alpha_{i 0}$ and $\beta_{i j}$. The following formula can be found in [10]. For $i>0$,

$$
\begin{equation*}
\alpha_{i 0}=-\frac{n}{2 i}\left[\operatorname{coeff.} \text { of } y^{i-1} \text { in }(1+y)^{-(n / 2)-1+4 i}(1-y)^{-2 i}\right] \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{i j}=(-1)^{i} 2^{-\frac{n}{2}+6 i} \frac{k-j}{i}\binom{k+i-j-1}{k-i-j} \tag{11}
\end{equation*}
$$

where $k=3 m+\ell$. Note that $a_{0}=c_{0}=\alpha_{00}=1$.
In [3], there is a calculation formula for $\alpha_{i 0}$. We extend the formula in the following lemma.

Lemma 2.2. Let $1 \leq i \leq 3 m+\ell$. Then we have
$\alpha_{i, 0}=\left\{\begin{array}{cl}-\frac{n}{2 i} \sum_{t=0, t+i}^{\frac{n}{2}+1-6 i}(-1)^{t}\binom{\frac{n}{2}+1-6 i}{t}\binom{\frac{n-7 i-t-1}{2}}{\frac{i-t-1}{2}}, & \text { if } \frac{n}{2}+1-6 i \geq 0 ; \\ -\frac{n}{2 i} \sum_{t=0}^{\left[\frac{i-1}{2}\right]}\binom{\frac{n}{2}-4 i+t}{t}\binom{-\frac{n}{2}+7 i-2 t-3}{i-2 t-1}, & \text { otherwise. }\end{array}\right.$

Proof. If $\frac{n}{2}+1-6 i \geq 0$, then the proof is given in [3]. Suppose that $\frac{n}{2}+1-6 i<0$.
From Eqn. (10), we have

$$
\begin{equation*}
\alpha_{i 0}=-\frac{n}{2 i}\left[\text { coeff. of } y^{i-1} \text { in }(1+y)^{-(n / 2)-1+4 i}(1-y)^{-2 i}\right] \tag{13}
\end{equation*}
$$

And

$$
\begin{equation*}
(1+y)^{-(n / 2)-1+4 i}(1-y)^{-2 i}=\left(1-y^{2}\right)^{-n / 2-1+4 i}(1-y)^{n / 2+1-6 i} \tag{14}
\end{equation*}
$$

$$
\begin{align*}
& =\left[\sum_{0 \leq t}\binom{\frac{n}{2}+1-4 i+t-1}{t} y^{2 t}\right] \times\left[\sum_{0 \leq j}\binom{-\frac{n}{2}-1+6 i+j-1}{j} y^{j}\right] \tag{15}\\
& =\sum_{0 \leq t, j}\binom{\frac{n}{2}+1-4 i+t-1}{t}\binom{-\frac{n}{2}-1+6 i+j-1}{j} y^{2 t+j} \tag{16}
\end{align*}
$$

Let $2 t+j=i-1$. Then $j=i-1-2 t$. From the above, we have the following result.

$$
\begin{align*}
\alpha_{i 0} & =-\frac{n}{2 i} \sum_{0 \leq t \leq\left[\frac{i-1}{2}\right]}\binom{\frac{n}{2}+1-4 i+t-1}{t}\binom{-\frac{n}{2}-1+6 i+i-1-2 t-1}{i-1-2 t} \\
& =-\frac{n}{2 i} \sum_{0 \leq t \leq\left[\frac{i-1}{2}\right]}\binom{\frac{n}{2}-4 i+t}{t}\binom{-\frac{n}{2}+7 i-2 t-3}{i-2 t-1} . \tag{17}
\end{align*}
$$

Let C be an extremal Type I binary self-dual code with near-minimal shadow of length $n=24 m+8 \ell+2 r$. Since C is extremal, we have $a_{0}=1, a_{1}=a_{2}=$ $\cdots=a_{2 m+1}=0$.
2.1. The case $n=24 m+2$. Suppose that $r=1$. By Lemma 2.1, we have $b_{0}=0, b_{1}=1$ if $m \geq 2$. Also we have $b_{2}=b_{3}=\cdots=b_{m-1}=0$. Otherwise, S would contain a vector v of weight less than or equal to $4 m-4+1$, and if $u \in S$ is a vector of weight 5 , then $u+v \in C$ with $\mathrm{wt}(u+v) \leq 4 m+2$, a contradiction to the minimum distance of C.

Using Eqn. (9) and the above discussion, we have the following.

$$
\begin{equation*}
c_{i}=\sum_{j=0}^{i} \alpha_{i j} a_{j}=\alpha_{i 0}(0 \leq i \leq 2 m+1) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{i}=\sum_{j=0}^{3 m+\ell-i} \beta_{i j} b_{j}=\beta_{i 1}+\sum_{j=2}^{3 m+\ell-i} \beta_{i j} b_{j}=\beta_{i 1}(2 m+\ell+1 \leq i \leq 3 m+\ell-1) \tag{19}
\end{equation*}
$$

Note that $c_{3 m+\ell}=0$.
Now we prove the first part of Theorem 1.5. Suppose that $\ell=0$. Then $n=24 m+2$. If $m=0,1$, then the code length $n=2,26$. For this code length, there is no extremal code [8]. Now suppose that $m \geq 2$. From Eqn. (18) and Eqn. (19), we have

$$
\begin{equation*}
\alpha_{2 m+1,0}=\beta_{2 m+1,1} \tag{20}
\end{equation*}
$$

From Eqn. (10) and Eqn. (11), we have

$$
\begin{equation*}
\alpha_{2 m+1,0}=-\frac{(12 m+1)(56 m+4)}{(2 m+1)(m-1)}\binom{5 m-1}{m-2} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{2 m+1,1}=-2^{5} \times \frac{3 m-1}{2 m+1}\binom{5 m-1}{m-2} \tag{22}
\end{equation*}
$$

From Eqn. (20), (21), and (22), we have the following equation:

$$
\begin{equation*}
144 m^{2}+58 m-7=0 \tag{23}
\end{equation*}
$$

The equation has no integer solution. Therefore the corresponding code does not exist. This completes the first part of Theorem 1.5.
2.2. The case $\mathbf{n}=\mathbf{2 4 m}+\mathbf{1 0}$. Now we prove the fourth part of Theorem 1.5. Suppose that $\ell=1$. Then $n=24 m+10$. If $m=0,1$, then the code length $n=10,34$. For this code length, there is no extremal code [8]. Now suppose that $m \geq 2$. From Eqn. (18) and Eqn. (19), we have

$$
\begin{equation*}
c_{2 m+1}=\alpha_{2 m+1,0}=\beta_{2 m+1,1}+\beta_{2 m+1, m} b_{m} \tag{24}
\end{equation*}
$$

Therefore, we get:

$$
\begin{equation*}
b_{m}=\frac{\alpha_{2 m+1,0}-\beta_{2 m+1,1}}{\beta_{2 m+1, m}} . \tag{25}
\end{equation*}
$$

From Eqn. (10) and Eqn. (11) we have

$$
\begin{equation*}
\alpha_{2 m+1,0}=-\frac{12 m+5}{2 m+1}\binom{5 m+1}{m} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{2 m+1, m}=-2, \quad \beta_{2 m+1,1}=-2 \times \frac{3 m}{2 m+1}\binom{5 m}{m-1} \tag{27}
\end{equation*}
$$

Therefore, we get:

$$
\begin{equation*}
b_{m}=\frac{27 m+5}{2 \times(4 m+1)}\binom{5 m}{m} \tag{28}
\end{equation*}
$$

From Eqn. (18) and Eqn. (19), we have

$$
\begin{equation*}
c_{2 m}=\alpha_{2 m, 0}=\beta_{2 m, 1}+\beta_{2 m, m} b_{m}+\beta_{2 m, m+1} b_{m+1} \tag{29}
\end{equation*}
$$

Therefore, we get:

$$
\begin{equation*}
b_{m+1}=\frac{\alpha_{2 m, 0}-\beta_{2 m, 1}-\beta_{2 m, m} b_{m}}{\beta_{2 m, m+1}} . \tag{30}
\end{equation*}
$$

From Eqn. (10) and Eqn. (11), we have

$$
\begin{equation*}
\alpha_{2 m, 0}=\frac{4(12 m+5)(5 m+1)(5 m+2)\left(32 m^{2}+19 m+3\right)}{(4 m+1)(4 m+2)(4 m+3)(4 m+4)(4 m+5)}\binom{5 m}{m} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{2 m, m+1}=2^{-5}, \beta_{2 m, 1}=\frac{3}{2^{6}}\binom{5 m-1}{m}=\frac{3}{80}\binom{5 m}{m}, \beta_{2 m, m}=\frac{2 m+1}{2^{4}} \tag{32}
\end{equation*}
$$

Therefore, we get:

$$
\begin{equation*}
b_{m+1}=-\frac{8(5 m+1) f(m)}{5(4 m+1)(4 m+2)(4 m+3)(4 m+4)(4 m+5)}\binom{5 m}{m} \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
f(m)=1728 m^{5}-146560 m^{4}-205500 m^{3}-105920 m^{2}-23763 m-1935 \tag{34}
\end{equation*}
$$

We can see that $f(m)>0$ if $m \geq 87$. Therefore, if $m \geq 87$, then $b_{m+1}<0$. This is a contradiction. This completes the fourth part of Theorem 1.5.

Remark 2.1. We made computation for $n=24 m+10$, and found that some of coefficients of $W_{S}(1, y)$ are not integer if $m=2,4,6,8,12,16,18,24,32$, $34,36,38,48,50,64,66,68,70,72,76$. Therefore for the corresponding code length, there is no extremal code with near-minimal shadow.
2.3. The case $\mathbf{n}=\mathbf{2 4 m}+4$. Now we prove the second part of Theorem 1.5. Suppose that $r=2$. By Lemma 2.1, we have $b_{0}=0, b_{1}=1$ if $m \geq 3$. Also we have $b_{2}=b_{3}=\cdots=b_{m-2}=0$. Otherwise, S would contain a vector v of weight less than or equal to $4 m-8+2$, and if $u \in S$ is a vector of weight 6 , then $u+v \in C$ with $\operatorname{wt}(u+v) \leq 4 m$, a contradiction to the minimum distance of C.

Using Eqn. (9) and the above discussion, we have the following.

$$
\begin{equation*}
c_{i}=\sum_{j=0}^{i} \alpha_{i j} a_{j}=\alpha_{i 0}(0 \leq i \leq 2 m+1) \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{i}=\sum_{j=0}^{3 m+\ell-i} \beta_{i j} b_{j}=\beta_{i 1}+\sum_{j=2}^{3 m+\ell-i} \beta_{i j} b_{j}=\beta_{i 1}(2 m+\ell+2 \leq i \leq 3 m+\ell-1) . \tag{36}
\end{equation*}
$$

Note that $c_{3 m+\ell}=0$.
Suppose that $\ell=0$. Then $n=24 m+4$. If $m=0,1,2$, then the code length $n=4,28,52$. For this code length, there is no extremal code [8]. Now suppose that $m \geq 3$. From Eqn. (35) and Eqn. (36), we have

$$
\begin{equation*}
c_{2 m+1}=\alpha_{2 m+1,0}=\beta_{2 m+1,1}+\beta_{2 m+1, m-1} b_{m-1} \tag{37}
\end{equation*}
$$

Therefore, we get:

$$
\begin{equation*}
b_{m-1}=\frac{\alpha_{2 m+1,0}-\beta_{2 m+1,1}}{\beta_{2 m+1, m-1}} \tag{38}
\end{equation*}
$$

From Eqn. (10) and Eqn. (11), we have

$$
\begin{equation*}
\alpha_{2 m+1,0}=-\frac{2(6 m+1)(8 m+1)}{m(2 m+1)}\binom{5 m}{m-1} \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{2 m+1, m-1}=-2^{4}, \beta_{2 m+1,1}=-2^{4} \times \frac{3 m-1}{2 m+1}\binom{5 m-1}{m-2} \tag{40}
\end{equation*}
$$

Therefore, we get:

$$
\begin{equation*}
b_{m-1}=\frac{(6 m+1)(8 m+1)}{8 m(2 m+1)}\binom{5 m}{m-1}-\frac{3 m-1}{2 m+1}\binom{5 m-1}{m-2} . \tag{41}
\end{equation*}
$$

From Eqn. (35) and Eqn. (36), we have

$$
\begin{equation*}
c_{2 m}=\alpha_{2 m, 0}=\beta_{2 m, 1}+\beta_{2 m, m-1} b_{m-1}+\beta_{2 m, m} b_{m} \tag{42}
\end{equation*}
$$

Therefore, we get:

$$
\begin{equation*}
b_{m}=\frac{\alpha_{2 m, 0}-\beta_{2 m, 1}-\beta_{2 m, m-1} b_{m-1}}{\beta_{2 m, m}} . \tag{43}
\end{equation*}
$$

From Eqn. (10) and Eqn. (11), we have

$$
\begin{equation*}
\alpha_{2 m, 0}=\frac{(6 m+1)(8 m+1)}{m(2 m+1)}\binom{5 m}{m-1} \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{2 m, m}=\frac{1}{4}, \beta_{2 m, 1}=\frac{3 m-1}{8 m}\binom{5 m-2}{m-1}, \beta_{2 m, m-1}=\frac{2 m+1}{2} . \tag{45}
\end{equation*}
$$

Therefore, we get:

$$
\begin{equation*}
b_{m}=-\frac{15(5 m-2)!f(m)}{4(2 m+1)(4 m+1)!(m-1)!} \tag{46}
\end{equation*}
$$

where

$$
\begin{equation*}
f(m)=144 m^{4}-1156 m^{3}-108 m^{2}+39 m+5 \tag{47}
\end{equation*}
$$

We can see that $f(m)>0$ if $m \geq 9$. Therefore, if $m \geq 9$, then $b_{m}<0$. This is a contradiction.

Remark 2.2. We made computation for $n=24 m+4$, and found that some of coefficients of $W_{S}(1, y)$ are not integer if $m=3,4,5,6,8$. Therefore for the corresponding code length, there is no extremal code with near-minimal shadow. The only remaining case is $m=7$.
2.4. The case $\mathbf{n}=\mathbf{2 4 m}+\mathbf{6}$. Now we prove the third part of Theorem 1.5. Suppose that $r=3$ and $n \neq 24 m+22$. Then $b_{0}=0, b_{1}=1$ if $m \geq 3$. Also we have $b_{2}=b_{3}=\cdots=b_{m-2}=0$. Otherwise, S would contain a vector v of weight less than or equal to $4 m-8+3$, and if $u \in S$ is a vector of weight 7 , then $u+v \in C$ with $\operatorname{wt}(u+v) \leq 4 m+2$, a contradiction to the minimum distance of C.

Using Eqn. (9) and the above discussion, we have the following.

$$
\begin{equation*}
c_{i}=\sum_{j=0}^{i} \alpha_{i j} a_{j}=\alpha_{i 0}(0 \leq i \leq 2 m+1) \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{i}=\sum_{j=0}^{3 m+\ell-i} \beta_{i j} b_{j}=\beta_{i 1}+\sum_{j=2}^{3 m+\ell-i} \beta_{i j} b_{j}=\beta_{i 1}(2 m+\ell+2 \leq i \leq 3 m+\ell-1) . \tag{49}
\end{equation*}
$$

Note that $c_{3 m+\ell}=0$.

Suppose that $\ell=0$. Then $n=24 m+6$. If $m=0,1,2$, then the code length $n=6,30,54$. For this code length, there is no extremal code [8]. Now suppose that $m \geq 3$. From Eqn. (48) and Eqn. (49), we have

$$
\begin{equation*}
c_{2 m+1}=\alpha_{2 m+1,0}=\beta_{2 m+1,1}+\beta_{2 m+1, m-1} b_{m-1} \tag{50}
\end{equation*}
$$

Therefore, we get:

$$
\begin{equation*}
b_{m-1}=\frac{\alpha_{2 m+1,0}-\beta_{2 m+1,1}}{\beta_{2 m+1, m-1}} \tag{51}
\end{equation*}
$$

From Eqn. (10) and Eqn. (11), we have

$$
\begin{equation*}
\alpha_{2 m+1,0}=-\frac{3(4 m+1)(6 m+1)}{m(2 m+1)}\binom{5 m}{m-1} \tag{52}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{2 m+1, m-1}=-2^{3}, \beta_{2 m+1,1}=-2^{3} \times \frac{3 m-1}{2 m+1}\binom{5 m-1}{m-2} \tag{53}
\end{equation*}
$$

Therefore, we get:

$$
\begin{equation*}
b_{m-1}=\frac{3(4 m+1)(6 m+1)}{8 m(2 m+1)}\binom{5 m}{m-1}-\frac{3 m-1}{2 m+1}\binom{5 m-1}{m-2} . \tag{54}
\end{equation*}
$$

From Eqn. (48) and Eqn. (49), we have

$$
\begin{equation*}
c_{2 m}=\alpha_{2 m, 0}=\beta_{2 m, 1}+\beta_{2 m, m-1} b_{m-1}+\beta_{2 m, m} b_{m} \tag{55}
\end{equation*}
$$

Therefore, we get:

$$
\begin{equation*}
b_{m}=\frac{\alpha_{2 m, 0}-\beta_{2 m, 1}-\beta_{2 m, m-1} b_{m-1}}{\beta_{2 m, m}} . \tag{56}
\end{equation*}
$$

From Eqn. (10) and Eqn. (11), we have

$$
\begin{equation*}
\alpha_{2 m, 0}=\frac{24 m+6}{m}\left\{\binom{5 m+2}{m-1}+\binom{5 m+1}{m-2}\right\} \tag{57}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{2 m, m}=\frac{1}{8}, \beta_{2 m, 1}=\frac{3 m-1}{16 m}\binom{5 m-2}{m-1}, \beta_{2 m, m-1}=\frac{2 m+1}{4} \tag{58}
\end{equation*}
$$

Therefore, we get:

$$
\begin{equation*}
b_{m}=-\frac{5(5 m-2)!f(m)}{2(4 m+3)!(m-1)!} \tag{59}
\end{equation*}
$$

where

$$
\begin{equation*}
f(m)=2688 m^{5}-53168 m^{4}-21900 m^{3}-28 m^{2}+837 m+87 \tag{60}
\end{equation*}
$$

We can see that $f(m)>0$ if $m \geq 21$. Therefore, if $m \geq 21$, then $b_{m}<0$. This is a contradiction.

Remark 2.3. We made computation for $n=24 m+6$, and found that some of coefficients of $W_{S}(1, y)$ are not integer if $3 \leq m \leq 20$ except $m=7,13,14,15$. Therefore for the corresponding code length, there is no extremal code with near-minimal shadow. The only remaining cases are $m=7,13,14,15$.

3. Summary

In this paper, we gave the definition of near-minimal shadow and proved that there is no extremal Type I binary self-dual codes with near-minimal shadow of length $n=24 m+2(m \geq 0)$, $n=24 m+4(m \geq 9)$, $n=24 m+6(m \geq 21)$, and $n=24 m+10(m \geq 87)$. We have also considered near-extremal Type I binary self-dual codes with near-minimal shadow. But we can not obtain the similar results. In the future work, it is worth while to improve Table 1.

Acknowledgment: The author would like to thank the referee for a lot of helpful comments.

References

1. C. Bachoc and P. Gaborit, Designs and self-dual codes with long shadows, J. Combin. Theory ser. A 105 (2004), 15-34.
2. E.R. Berlekamp, F.J. MacWilliams and N.J.A. Sloane, Gleason's theorem on self-dual codes, IEEE Trans. Inform. Theory 18 (1972), 409-414.
3. S. Bouyuklieva, M. Harada and A. Munemasa, Nonexistence of certain singly even self-dual codes with minimal shadow, The Electronic Journal of Combinatorics 25 (2018), 1-13.
4. S. Bouyuklieva and W. Willems, Singly even self-dual codes with minimal shadow, IEEE Trans. Inform. Theory 58 (2012), 3856-3860.
5. J.H. Conway and N.J.A. Sloane, A new upper bound on the minimal distance of self -dual codes, IEEE Trans. Inform. Theory 36 (1990), 1319-1333.
6. J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, New York: Springer-Verlag, 1988.
7. S. Han, Near-Extremal Type I Self-Dual Codes with Minimal Shadow over GF(2) and $G F(4)$, MDPI Information 9, 172 (2018), 1-12.
8. W.C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Appl. 11 (2005), 451-490.
9. F.J. MacWilliams and N.J.A. Sloane, The theory of error correcting codes, North-Holland; 9th ed., 1998.
10. E.M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inform. Theory 44 (1998), 134-139.
11. N. Elkies, Lattices and codes with long shadows, Math. Res. Lett. 2 (1995), 643651.

Sunghyu Han received M.Sc. and Ph.D from Yonsei University. Since 2009 he has been at KoreaTech. His research interests include Coding Theory.
School of Liberal Arts, KoreaTech, Cheonan 31253, Korea.
e-mail: sunghyu@koreatech.ac.kr

[^0]: Received August 15, 2018. Revised October 24, 2018. Accepted October 28, 2018.
 (c) 2019 Korean SIGCAM and KSCAM.

