DOI QR코드

DOI QR Code

UNIFORM MESH METHOD FOR A MAXWELL'S EQUATION WITH DISCONTINUOUS COEFFICIENTS

  • KIM, JI HYUN (Department of Mathematics, Hannam University)
  • Received : 2018.09.23
  • Accepted : 2018.11.28
  • Published : 2019.01.30

Abstract

In this paper, we introduce a uniform mesh method for a Maxwell's equation with discontinuous coefficients. We observe optimal O(h) order for the electric field and O(h) order for the curl.

Keywords

E1MCA9_2019_v37n1_2_123_f0001.png 이미지

FIGURE 1. Interface elements and subtriangles.

E1MCA9_2019_v37n1_2_123_f0002.png 이미지

FIGURE 3. Numerical solution.

E1MCA9_2019_v37n1_2_123_f0003.png 이미지

FIGURE 2. A reference interface triangle.

TABLE 1. Error for Example 4.1

E1MCA9_2019_v37n1_2_123_t0001.png 이미지

TABLE 2. Error for Example 4.2

E1MCA9_2019_v37n1_2_123_t0002.png 이미지

References

  1. P. Monk, Finite Element Methods for Maxwells Equations, Oxford University Press, New York, 2003.
  2. J.C. Nedelec, Mixed finite elements in R3, Numer. Math. 35 (1980), 315-341. https://doi.org/10.1007/BF01396415
  3. J.C. Nedelec, A new family of mixed finite elements in R3, Numer. Math. 50 (1986), 57-81. https://doi.org/10.1007/BF01389668
  4. G.A. Baker, W.N. Jureidini, and O.A. Karakashian, Piecewise solenoidal vector fields and the Stokes problem, SIAM J. Numer. Anal. 27 (1990), 1466-1485. https://doi.org/10.1137/0727085
  5. M. Costabel, M. Dauge, and S. Nicaise, Singularities of Maxwell interface problems, M2AN Math. Model. Numer. Anal. 33 (1999), 627-649. https://doi.org/10.1051/m2an:1999155
  6. D. Boffi, Fortin operator and discrete compactness for edge elements, Numer. Math. 87 (2000), 229-246. https://doi.org/10.1007/s002110000182
  7. R. Hiptmair, Finite elements in computational electromagnetism, Acta Numer. 11 (2002), 237-339. https://doi.org/10.1017/S0962492902000041
  8. Z. Li, T. Lin, and X. Wu, New Cartesian grid methods for interface problems using the finite element formulation, Numer. Math. 96 (2003), 61-98. https://doi.org/10.1007/s00211-003-0473-x
  9. Z. Li, T. Lin, Y. Lin, and R.C. Rogers, An immersed finite element space and its approximation capability, Numer. Methods. P.D.E. 20 (2004), 338-367. https://doi.org/10.1002/num.10092
  10. A. Buffa, Remarks on the discretization of some noncoercive operator with applications to heterogeneous Maxwell equations, SIAM J. Numer. Anal. 43 (2005), 1-18. https://doi.org/10.1137/S003614290342385X
  11. P. Houston, I. Perugia, A. Schneebeli, and D. Schotzau, Interior penalty method for the indefinite time-harmonic Maxwell equations, Numer. Math. 100 (2005), 485-518. https://doi.org/10.1007/s00211-005-0604-7
  12. D. Boffi, M. Costabel, M. Dauge, and L. Demkowicz, Discrete compactness for the hp version of rectangular edge finite elements, SIAM J. Numer. Anal. 44 (2006), 979-1004. https://doi.org/10.1137/04061550X
  13. D.Y. Kwak, K.T. Wee, and K.S. Chang, An analysis of a broken $P_1$-nonconforming finite element method for interface problems, SIAM J. Numer. Aanal. 48 (2012), 2117-2134.
  14. J.H. Kim, Do Y. Kwak, New curl conforming finite elements on parallelepiped, Numer. Math. 131 (2015), 473-488. https://doi.org/10.1007/s00211-015-0696-7
  15. D.Y. Kwak, J. Lee, A modified $P_1$-immersed finite element method, Int. J. Pure Appl. Math. 104 (2015), 471-494.
  16. D.Y. Kwak, S. Jin, and D. Kyeong , A stabilized $P_1$-immersed finite element method for the interface for elasticity problems, ESAIM: $M^2AN$ 51 (2017) , 187-207. https://doi.org/10.1051/m2an/2016011
  17. J.H. Kim, Discrete compactness property for Kim-Kwak finite elements, J. Appl. Math. & Informatics 36 (2018), 411-418. https://doi.org/10.14317/JAMI.2018.411