J. Appl. Math. & Informatics Vol. **37**(2019), No. 1 - 2, pp. 149 - 156 https://doi.org/10.14317/jami.2019.149

SOME 4-TOTAL PRIME CORDIAL LABELING OF GRAPHS

R. PONRAJ*, J. MARUTHAMANI AND R. KALA

ABSTRACT. Let G be a (p,q) graph. Let $f: V(G) \to \{1,2,\ldots,k\}$ be a map where $k \in \mathbb{N}$ and k > 1. For each edge uv, assign the label gcd(f(u), f(v)). f is called k-Total prime cordial labeling of G if $|t_f(i) - t_f(j)| \leq 1, i, j \in \{1,2,\cdots,k\}$ where $t_f(x)$ denotes the total number of vertices and the edges labelled with x. A graph with a k-total prime cordial labeling is called ktotal prime cordial graph. In this paper we investigate the 4-total prime cordial labeling of some graphs.

AMS Mathematics Subject Classification : 65H05, 65F10. *Key words and phrases* : Corona, ladder, triangular snake, friendship graph.

1. Introduction

All Graphs in this paper are finite, simple and undirected. Let G_1 , G_2 respectively be (p_1, q_1) , (p_2, q_2) graphs. The corona of G_1 with G_2 , $G_1 \odot G_2$ is the graph obtained by taking one copy of G_1 and p_1 copies of G_2 and joining the i^{th} vertex of G_1 with an edge to every vertex in the i^{th} copy of G_2 . The cartesian product of two graphs G_1 and G_2 is the graph $G_1 \times G_2$ with vertex set $V_1 \times V_2$ and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are adjacent whenever $[u_1 = v_1 \text{ and } u_2 \text{ adj } v_2]$ or $[u_2 = v_2 \text{ and } u_1 \text{ adj } v_1]$. The graph $L_n = P_n \times K_2$ is called ladder. A friendship graph F_n is a graph which consists of n triangles with a common vertex. Ponraj et al. [4], has been introduced the concept of k-total prime cordial labeling and investigated the 4-total prime cordial labeling for path, cycle, star, bistar, flower graph, gear graph etc. In this paper we investigate the 4-total prime cordial prime cordiality of some graphs like comb, double comb, triangular snake, double triangular snake, ladder, friendship graph.

Received October 23, 2018. Revised December 4, 2018. Accepted December 7, 2018. *Corresponding author.

^{© 2019} Korean SIGCAM and KSCAM.

2. Main results

Theorem 2.1. The comb $P_n \odot K_1$ is 4-total prime cordial.

Proof. Let P_n be the path u_1, u_2, \ldots, u_n . Let v_1, v_2, \ldots, v_n be adjacent to the pendent vertices u_1, u_2, \ldots, u_n . Clearly $|V(P_n \odot K_1)| + |E(P_n \odot K_1)| = 4n - 1$. **Case 1.** $n \equiv 0 \pmod{4}$.

Let $n = 4t, t \in \mathbb{N}$. Assign the label 4 to the vertices u_1, u_2, \ldots, u_t and assign the label 3 to the vertices $u_{t+1}, u_{t+2}, \ldots, u_{2t}$. Next we assign the label 2 to the vertices $u_{2t+1}, u_{2t+2}, \ldots, u_{3t}$ and assign 1 to the vertices $u_{3t+1}, u_{3t+2}, \ldots, u_{n-1}$ respectively. Finally we assign the label 4 to the vertex u_n . Next we consider the vertices v_1, v_2, \ldots, v_n . Assign the label 4 to the vertices v_1, v_2, \ldots, v_t and assign the label 3 to the vertices $v_{t+1}, v_{t+2}, \ldots, v_{2t}$ and 2 to the vertices $v_{2t+1}, v_{2t+2}, \ldots, v_{3t}$. Next we assign 1 to the vertices $v_{3t+1}, v_{3t+2}, \ldots, v_{n-1}$ respectively. Finally we assign the label 3 to the vertex v_n . Clearly $t_f(1) = t_f(3) =$ $t_f(4) = 4t$ and $t_f(2) = 4t - 1$.

Case 2. $n \equiv 1 \pmod{4}$.

Let n = 4t + 1, $t \in \mathbb{N}$. In this case, assign the label to the vertices u_i $(1 \le i \le n - 1)$ and v_i $(1 \le i \le n - 1)$ by in case 1. Next assign the labels 2 and 3 to the vertices u_n and v_n respectively. Here $t_f(1) = t_f(2) = t_f(3) = 4t + 1$ and $t_f(4) = 4t$.

Case 3. $n \equiv 2 \pmod{4}$.

Let n = 4t + 2, $t \in \mathbb{N}$. As in case 2, assign the label to the vertices u_i $(1 \le i \le n-1)$ and v_i $(1 \le i \le n-1)$. Next we assign the labels 4 and 3 to the vertices u_n and v_n respectively. It is easy to verify that $t_f(1) = t_f(2) = t_f(3) = 4t + 2$ and $t_f(4) = 4t + 1$.

Case 4. $n \equiv 3 \pmod{4}$.

Let n = 4t + 3, $t \in \mathbb{N}$. Assign the label to the vertices u_i $(1 \le i \le n-3)$ and v_i $(1 \le i \le n-3)$ as in case 1. Finally we assign the labels 4, 2, 3 to the vertices u_{n-2} , u_{n-1} and u_n and 3, 4, 2 to the vertices v_{n-2} , v_{n-1} and v_n respectively. Here $t_f(1) = t_f(2) = t_f(4) = 4t + 3$ and $t_f(3) = 4t + 2$.

Theorem 2.2. The double comb $P_n \odot 2K_1$ is 4-total prime cordial.

Proof. Let P_n be the path $u_1u_2...u_n$. Let x_i, y_i $(1 \le i \le n)$ be the pendent vertices adjacent to u_i $(1 \le i \le n)$. Obviously $|V(P_n \odot 2K_1)| + |E(P_n \odot 2K_1)| = 6n - 1$.

Case 1. $n \equiv 0 \pmod{4}$.

Let $n = 4t, t \in \mathbb{N}$. Consider the vertices of path P_n . Assign the label 4 to the vertices u_1, u_2, \ldots, u_t and assign the label 3 to the vertices $u_{t+1}, u_{t+2}, \ldots, u_{2t}$. Next we assign the label 2 to the vertices $u_{2t+1}, u_{2t+2}, \ldots, u_{3t}$ then assign 1 to the vertices $u_{3t+1}, u_{3t+2}, \ldots, u_{n-1}$. Finally we assign the label 3 to the vertex u_n . Next we move to the pendent vertices. Assign the label to the vertices x_i, y_i $(1 \le i \le n-1)$ as in u_i $(1 \le i \le n-1)$. Now we assign the labels 2 to the vertex x_n and 4 to the vertex y_n . Clearly $t_f(2) = t_f(3) = t_f(4) = 6t$ and $t_f(1) = 6t - 1$. Case 2. $n \equiv 1 \pmod{4}$.

Let n = 4t + 1, $t \in \mathbb{N}$. As in case 1, assign the label to the vertices u_i, x_i, y_i $(1 \le i \le n - 1)$. Now we assign the labels 3, 2, 4 to the vertices u_n, x_n and y_n respectively. Here $t_f(1) = t_f(2) = t_f(4) = 6t + 1$ and $t_f(3) = 6t + 2$. **Case 3.** $n \equiv 2 \pmod{4}$.

Let n = 4t + 2, $t \in \mathbb{N}$. Assign the label to the vertices u_i, x_i, y_i $(1 \le i \le n - 1)$. Next we assign the labels 4, 2, 3 respectively to the vertices x_n, u_n and y_n . It is easy to verify that $t_f(1) = t_f(2) = t_f(3) = 6t + 3$ and $t_f(4) = 6t + 2$. **Case 4.** $n \equiv 3 \pmod{4}$.

Let $n = 4t + 3, t \in \mathbb{N}$. As in case 1, assign the label to the vertices u_i, x_i, y_i $(1 \le i \le n-3)$. Now we assign the labels 4, 3, 2, 4, 3, 2, 4, 3, 2 to the vertices $x_{n-2}, x_{n-1}, x_n, u_{n-2}, u_{n-1}, u_n, y_{n-2}, y_{n-1}$ and y_n respectively. Here $t_f(2) = t_f(3) = t_f(4) = 6t + 4$ and $t_f(1) = 6t + 5$.

Theorem 2.3. The graph $C_n \odot 2K_1$ is 4-total prime cordial.

Proof. Let C_n be the cycle $u_1u_2...u_nu_1$. Let x_i, y_i $(1 \le i \le n)$ be the pendent vertices adjacent to u_i $(1 \le i \le n)$. It is easy to verify that $|V(C_n \odot 2K_1)| + |E(C_n \odot 2K_1)| = 6n$.

Case 1. $n \equiv 0, 1, 3 \pmod{4}$.

Let $n = 4t, n = 4t + 1, n = 4t + 3, t \in \mathbb{N}$. The vertex labelled in Theorem 2.2 is also a 4-total prime cordial of $C_n \odot 2K_1$.

Case 2. $n \equiv 3 \pmod{4}$.

Let n = 4t + 2, $t \in \mathbb{N}$. Assign the label to u_i, x_i, y_i $(1 \le i \le n)$ as in Theorem 2.2. Finally interchange the labels of u_n and x_n . Obviously this induced vertex labels is a 4-total prime cordial of $C_n \odot 2K_1$.

Theorem 2.4. The ladder L_n is 4-total prime cordial.

Proof. Let $V(L_n) = \{u_i, v_i : 1 \le i \le n\}$ and $E(L_n) = \{u_i u_{i+1}, v_i v_{i+1} : 1 \le i \le n-1\} \cup \{u_i v_i : 1 \le i \le n\}$. Clearly $|V(L_n)| + |E(L_n)| = 5n - 2$. **Case 1.** $n \equiv 0 \pmod{4}$.

Let $n = 4t, t \in \mathbb{N}$. Assign the label 4 to the vertices u_1, u_2, \ldots, u_t and assign the label 2 to the vertices $u_{t+1}, u_{t+2}, \ldots, u_{2t}$. Next we assign the label 3 to the vertices $u_{2t+1}, u_{2t+2}, \ldots, u_{3t}$ then assign the label 1 to the vertices $u_{3t+1}, u_{3t+2}, \ldots, u_{n-1}$. Finally we assign the label 4 to the vertex u_n . Next we consider the vertices v_i $(1 \le i \le n)$. Assign the label 4 to the vertices v_1, v_2, \ldots, v_t and assign the label 2 to the vertices $v_{t+1}, v_{t+2}, \ldots, v_{2t}$. Next we assign the label 3 to the vertices $v_{2t+1}, v_{2t+2}, \ldots, v_{3t}$ then assign the label 1 to the vertices $v_{3t+1}, v_{3t+2}, \ldots, v_{n-1}$. Finally we assign the label 3 to the vertex v_n . Clearly $t_f(1) = t_f(2) = 5t$ and $t_f(3) = t_f(4) = 5t - 1$.

Case 2. $n \equiv 1 \pmod{4}$.

Let n = 4t + 1, $t \in \mathbb{N}$. As in case 1, assign the label to the vertices u_i , v_i $(1 \le i \le n-1)$. Next we assign the label 4, 3 respectively to the vertices u_n and v_n . Here $t_f(1) = t_f(3) = t_f(4) = 5t + 1$ and $t_f(2) = 5t$. **Case 3.** $n \equiv 2 \pmod{4}$. Let n = 4t + 2, $t \in \mathbb{N}$. Assign the label to the vertices u_i , v_i $(1 \le i \le n-4)$ by in case 1. Now we assign the label 1, 4, 3, 4 to the vertices u_{n-3} , u_{n-2} , u_{n-1} and u_n respectively. Finally we assign 3, 2, 3, 4 respectively to the vertices v_{n-3} , v_{n-2} , v_{n-1} and v_n . It is easy to verify that $t_f(1) = t_f(2) = t_f(3) = t_f(4) = 5t + 2$. **Case 4.** $n \equiv 3 \pmod{4}$.

Let n = 4t + 3, $t \in \mathbb{N}$. In this case, assign the label to the vertices u_i , v_i $(1 \le i \le n-6)$ by in case 1. Then we assign the labels 4, 4, 3, 2, 1, 1 to the vertices u_{n-5} , u_{n-4} , u_{n-3} , u_{n-2} , u_{n-1} and u_n respectively. Finally we assign 4, 3, 3, 2, 1, 1 respectively to the vertices v_{n-3} , v_{n-3} , v_{n-3} , v_{n-2} , v_{n-1} and v_n . Here $t_f(2) = t_f(3) = t_f(4) = 5t + 3$ and $t_f(1) = 5t + 4$.

Theorem 2.5. The triangular snake T_n is 4-total prime cordial.

Proof. Let P_n be the path $u_1u_2...u_n$. Let $v_1, v_2, ..., v_{n-1}$ be the vertices such that v_i is adjacent to both u_i and u_{i+1} $(1 \le i \le n-1)$. It is easy to verift that $|V(T_n)| + |E(T_n)| = 5n - 4$.

Case 1. $n \equiv 0 \pmod{4}$.

Let $n = 4t, t \in \mathbb{N}$. Assign the label 4 to the vertices u_1, u_2, \ldots, u_t and assign the label 2 to the vertices $u_{t+1}, u_{t+2}, \ldots, u_{2t}$. Next we assign the label 3 to the vertices $u_{2t+1}, u_{2t+2}, \ldots, u_{3t}$ then we assign 1 to the vertices $u_{3t+1}, u_{3t+2}, \ldots, u_{n-1}$. Finally we assign the label 3 to the vertex u_n . Next we consider the vertices v_i $(1 \le i \le n-1)$. Assign the label 4 to the vertices v_1, v_2, \ldots, v_t and assign the label 2 to the vertices $v_{t+1}, v_{t+2}, \ldots, v_{2t-1}$ and we assign the label 3 to the vertices $v_{2t}, v_{2t+1}, \ldots, v_{3t-1}$. Next we assign 1 to the vertices $v_{3t}, v_{3t+1}, \ldots, v_{n-3}$. Finally, we assign the labels 2, 4 to the vertices v_{n-2} and v_{n-1} respectively. Here $t_f(1) = t_f(2) = t_f(3) = t_f(4) = 5t - 1$.

Case 2. $n \equiv 1 \pmod{4}$.

Let n = 4t + 1, t > 1 $t \in \mathbb{N}$. As in case 1, assign the label the vertices to $u_i(1 \le i \le 3t)$, v_i $(1 \le i \le 3t-1)$. Next we assign the labels 4, 3, 2 to the vertices $u_{3t+1}, u_{3t+2}, u_{3t+3}$ respectively. Assign the label 1 to the remaining vertices of the path P_n . Now we assign the labels 1, 3, 4 to the vertices v_{3t+3}, v_{3t+1} and v_{3t+2} respectively. Finally we assign the label 1 to the vertices $v_{3t+3}, v_{3t+4}, \ldots, v_{n-1}$. Clearly $t_f(1) = t_f(2) = t_f(4) = 5t$ and $t_f(3) = 5t + 1$. For n = 5 a 4-total prime cordial labelling of T_5 is shown in Figure 1.

FIGURE 1

Case 3. $n \equiv 2 \pmod{4}$.

Let n = 4t + 2, t > 1 $t \in \mathbb{N}$. As in case 2, we assign the label to the vertices to u_i $(1 \leq i \leq 3t + 2)$, v_i $(1 \leq i \leq 3t - 1)$. Then we assign the labels 4, 2 to the vertices u_{3t+3} , u_{3t+4} respectively. Finally we assign the label 1 to the remaining vertices of the path P_n . Then we assign the labels 4, 3, 2 respectively to the vertices v_{3t} , v_{3t+1} and v_{3t+2} . Finally we assign the label 1 to the vertices v_{3t+3} , v_{3t+4} , ..., v_{n-1} . It is easy to verify that $t_f(1) = t_f(3) = 5t + 1$ and $t_f(2) = t_f(4) = 5t + 2$. When n = 6 a 4-total prime cordial labelling of T_6 is shown in Figure 2.

FIGURE 2

Case 4. $n \equiv 3 \pmod{4}$.

Let n = 4t+3, t > 1 $t \in \mathbb{N}$. Assign the label to the vertices to u_i $(1 \le i \le 3t+2)$, v_i $(1 \le i \le 3t+2)$ by case 3. Next we assign the label 2, 3, 4, 3 respectively to the vertices u_{3t+3} , u_{3t+4} , u_{3t+5} and u_{3t+6} . Then the remaining vertices of path labelled by 1. Now we assign the label 2 to the vertex v_{3t+3} . Finally we assign the label 1 to the vertices $v_{3t+4}, v_{3t+5}, \ldots, v_{n-1}$. Clearly $t_f(1) = t_f(2) = t_f(3) = 5t+3$ and $t_f(4) = 5t+2$. When n = 7 a 4-total prime cordial labelling of T_7 is shown in Figure 3.

Theorem 2.6. The double triangular snake $D(T_n)$ is 4-total prime cordial.

Proof. Let P_n be the path $u_1u_2...u_n$. Let v_i , w_i be the vertex adjacent to u_i and u_{i+1} . Obviously $|V(D(T_n))| + |E(D(T_n))| = 8n - 7$.

Case 1. $n \equiv 0 \pmod{4}$.

Let $n = 4t, t \in \mathbb{N}$. Assign the label 4 to the vertices u_1, u_2, \ldots, u_t and assign the label 2 to the vertices $u_{t+1}, u_{t+2}, \ldots, u_{2t}$. Next we assign the label 3 to the vertices $u_{2t+1}, u_{2t+2}, \ldots, u_{3t}$ then we assign 1 to the vertices $u_{3t+1}, u_{3t+2}, \ldots, u_{n-1}$. Finally we assign the label 3 to the vertex u_n . Next we consider the vertices v_i, w_i $(1 \le i \le n-1)$. Assign the label 4 to the vertices v_1, v_2, \ldots, v_t and w_1, w_2, \ldots, w_t . Then assign the label 2 to the vertices $v_{t+1}, v_{t+2}, \ldots, v_{2t-1}$ and $w_{t+1}, w_{t+2}, \ldots, w_{2t-1}$. Next we assign the label 3 to the vertices $v_{2t}, v_{2t+1}, \ldots, v_{3t-1}$ and $w_{2t}, w_{2t+1}, \ldots, w_{3t-1}$. Now we assign 1 to the vertices $v_{3t}, v_{3t+1}, \ldots, v_{n-3}$ and $w_{3t}, w_{3t+1}, \ldots, w_{n-3}$. Finally, we assign the labels 2, 4, 2, 4 to the vertices $v_{n-2}, v_{n-1}, w_{n-2}$ and w_{n-1} respectively. Clearly $t_f(1) = t_f(2) = t_f(3) = 8t - 2$ and $t_f(4) = 8t - 1$.

Case 2. $n \equiv 1 \pmod{4}$.

Let n = 4t + 1, $t \in \mathbb{N}$. As in case 1, assign the label to the vertices u_i $(1 \le i \le n-3)$, v_i $(1 \le i \le n-1)$ and w_i $(1 \le i \le n-3)$. Next we assign the labels 2, 3, 4, 2, 3 respectively to the vertices u_{n-2} , u_{n-1} , u_n , w_{n-2} and w_{n-1} . Here $t_f(1) = t_f(3) = t_f(4) = 8t$ and $t_f(2) = 8t + 1$.

Case 3. $n \equiv 2 \pmod{4}$.

Let n = 4t + 2, $t \in \mathbb{N}$. As in case 2, assign the label to the vertices u_i $(1 \le i \le n - 4)$, v_i $(1 \le i \le n - 4)$ and w_i $(1 \le i \le n - 2)$. Now we assign the labels 2, 3, 3, 4, 4, 4, 4, 2 to the vertices u_{n-3} , u_{n-2} , u_{n-1} , u_n , v_{n-3} , v_{n-2} , v_{n-1} and w_{n-1} respectively. It is easy to verify that $t_f(1) = t_f(2) = t_f(4) = 8t + 2$ and $t_f(3) = 8t + 3$.

Case 4. $n \equiv 3 \pmod{4}$.

Let n = 4t + 3, $t \in \mathbb{N}$. As in case 3, assign the label to the vertices u_i $(1 \le i \le n-1)$, v_i $(1 \le i \le n-2)$ and w_i $(1 \le i \le n-2)$. Finally we assign the labels 4, 3, 2 respectively to the vertices u_n , v_{n-1} and w_{n-1} . Clearly $t_f(1) = t_f(3) = t_f(4) = 8t + 4$ and $t_f(2) = 8t + 5$.

Theorem 2.7. The friendship graph $C_3^{(t)}$ is 4-total prime cordial iff $t \equiv 0, 1, 2 \pmod{4}$.

Proof. Let $V(C_3^{(t)}) = \{u, u_i, v_i : 1 \le i \le n\}$ and $E(C_3^{(t)}) = \{uu_i, uv_i, u_iv_i : 1 \le i \le n\}$.

Case 1. $t \equiv 0 \pmod{4}$.

Let $t = 4m, m > 4 m \in \mathbb{N}$.

Subcase 1. m is even.

Assign the label 4 to the central vertex u. Next assign the label 4 to the vertex u_1, u_2, \ldots, u_m and v_1, v_2, \ldots, v_m . Next assign 2 to the vertices $u_{m+1}, u_{m+2}, \ldots, u_{2m}$ and $v_{m+1}, v_{m+2}, \ldots, v_{2m}$. Next assign the label 3 to the vertices $u_{2m+1}, u_{2m+2}, \ldots, u_{2m}$. $u_{\frac{7m}{2}}, \ldots, u_{4m}$ and $v_{2m+1}, v_{2m+2}, \ldots, v_{\frac{7m}{2}}$. Finally assign the label 1 to the remaining vertices.

Subcase 2. m is odd.

As in subcase 1, assign the label to the vertices u_i , v_i $(1 \le i \le \frac{7m+1}{2})$. Next assign the label 3 to the vertices $v_{\frac{7m+1}{2}}, \ldots, v_{4m}$ and assign the label 1 to the remaining vertices. Clearly $t_f(1) = t_f(2) = t_f(3) = 5m$ and $t_f(4) = 5m + 1$. **Case 2.** $t \equiv 1 \pmod{4}$.

Let t = 4m + 1, m > 4 $m \in \mathbb{N}$. As in case 1, assign the label to the vertices u_i , v_i $(1 \le i \le 4m - 1)$. Finally assign the labels 3, 2 to the vertices u_n and v_n respectively. Clearly $t_f(1) = t_f(2) = 5m + 2$ $t_f(3) = t_f(4) = 5m + 1$. Case 3. $t \equiv 2 \pmod{4}$.

Let t = 4m + 2, m > 4 $m \in \mathbb{N}$. Assign the label to the vertices u_i , v_i $(1 \le i \le 4m - 2)$ by case 1. Next we assign the labels 4, 2, 3, 3 respectively to the vertices u_{4m-1} , v_{4m-1} , u_{4m} and v_{4m} . It is clear that $t_f(1) = 5m + 2$ and $t_f(2) = t_f(3) = t_f(4) = 5m + 3$.

Case 4. $t \equiv 3 \pmod{4}$.

Let $t = 4m + 2, m > 4 m \in \mathbb{N}$. Clearly $|V(c_3^{(t)})| + |E(c_3^{(t)})| = 20m + 16$. Suppose

f is a 4-total prime cordial of $C_3^{(t)}$.

Subcase 1. f(u) = 1 or 3.

In this case, either $t_f(2) < 5m + 4$ or $t_f(4) < 5m + 4$. Subcase 2. f(u) = 4.

To get edge label 3, 3 should be labelled to the adjacent vertices. So far the maximum possibility 3 is the label of the adjacent vertices. To get the edge label 2, either 2 is labelled to the adjacent vertices or 2 and 4 are labelled on the adjacent vertices. Thus for the maximum possibility of 4 is the labels of the adjacent vertices and 2 is the labels of the adjacent vertices. But in this case $t_f(4) > 5m + 4$, a contradiction.

Subcase 3. f(u) = 2.

Similar to subcase 2.

Case 2. t = 2, 4, 5, 6, 8.

A 4-total prime cordial labeling is given in Table 1.

n	2	4	5	6	8
u	4	2	2	2	2
u_1	4	4	4	4	4
u_2	2	4	4	4	4
u_3	3	4	4	4	4
u_4	3	3	4	4	4
u_5		3	3	3	4
u_6		3	3	3	4
u_7		4	3	3	3
u_8		3	3	3	3
u_9			2	2	3
u_{10}			1	3	3

R. Ponraj, J. Maruthamani and R. Kala

u_{11}				4	3		
u_{12}				3	3		
u_{13}					4		
u_{14}					3		
u_{15}					2		
u_{16}					1		
Table 1							

Table 1:

References

- 1. I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combinatoria **23**(1987), 201-207.
- 2. J.A. Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics $\mathbf{19}$ (2017) #Ds6.
- 3. F. Harary, Graph theory, Addision wesley, New Delhi (1969).
- 4. R. Ponraj, J. Maruthamani and R. Kala, k-Total prime cordial labeling of graphs, Journal of Algorithms and Computation 50(1), 143-149.
- 5. R. Ponraj, J. Maruthamani and R. Kala, Some classes of 4-Total prime cordial labeling of graphs, Global Journal of Engineering science and Researches 5(11), 319-327.

R. Ponraj

Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India.

e-mail: ponrajmaths@gmail.com

J. Maruthamani

Research Scholar, Department of Mathematics, Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627012, Tamilnadu, India. e-mail: mmani2011@gmail.com

R. Kala

Department of Mathematics, Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627012, Tamilnadu, India. e-mail: karthipyi91@yahoo.co.in

156