DOI QR코드

DOI QR Code

The impact of corrosion on marine vapour recovery systems by VOC generated from ships

  • Received : 2017.10.28
  • Accepted : 2018.01.29
  • Published : 2019.01.31

Abstract

Marine emissions of Volatile Organic Compounds (VOCs) have received much attention because the International Maritime Organization (IMO) requires the installation of vapour emission control systems for the loading of crude oils or petroleum products onto ships. It was recently recognised that significant corrosion occurs inside these vapour emission control systems, which can cause severe clogging issues. In this study, we analysed the chemical composition of drain water sampled from currently operating systems to investigate the primary causes of corrosion in vapour recovery systems. Immersion and electrochemical tests were conducted under simulated conditions with various real drain water samples, and the impact of corrosion on the marine vapour recovery system was carefully investigated. Moreover, corrosion tests on alternative materials were conducted to begin identifying appropriate substitutes. Thermodynamic calculations showed the effects of environmental factors on the production of condensed sulphuric acid from VOC gas. A model of sulphuric acid formation and accumulation by the characteristics of VOC from crude oil and flue gas is suggested.

Keywords

References

  1. Abe, M., Kawashima, K., Kozawa, K., Sakai, H., Kaneko, K., 2000. Amination of activated carbon and adsorption characteristics of its aminated surface. Langmuir 16, 5059-5063. https://doi.org/10.1021/la990976t.
  2. Akhmatskaya, E.V., Apps, C.J., Hillier, I.H., Masters, A.J., Watt, N.E., Whitehead, J.C., 1997. Formation of $H_2SO_4$ from $SO_3$ and $H_2O$, catalysed in water clusters. Chem. Commun. 707-708. https://doi.org/10.1039/A700802C.
  3. Avery, R.J., 2006. Reactivity-based VOC control for solvent products: more efficient ozone reduction strategies. Environ. Sci. Technol. 40, 4845-4850. https://doi.org/10.1021/es060296u.
  4. Azapagic, A., 1999. Life cycle assessment and its application to process selection, design and optimisation. Chem. Eng. J. 73, 1-21. https://doi.org/10.1016/S1385-8947(99)00042-X.
  5. Belo, L.P., Elliott, L.K., Stanger, R.J., Sporl, R., Shah, K.V., Maier, J., Wall, T.F., 2014. High-temperature conversion of $SO_2$ to $SO_3$: homogeneous experiments and catalytic effect of fly ash from air and oxy-fuel firing. Energy Fuels 28, 7243-7251. https://doi.org/10.1021/ef5020346.
  6. Buhaug, O., Corbett, J., Endresen, O., Eyring, V., Faber, J., Hanayama, S., et al., 2009. Second IMO GHG Study, IMO.
  7. Carrillo, A.M., Carriazo, J.G., 2015. Cu and Co oxides supported on halloysite for the total oxidation of toluene. Appl. Catal. B Environ. 164, 443-452. https://doi.org/10.1016/j.apcatb.2014.09.027.
  8. Chung, C., Lee, M., Choe, E.K., 2004. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr. Polym. 58, 417-420. https://doi.org/10.1016/j.carbpol.2004.08.005.
  9. Cox, A., Lyon, S.B., 1994. An electrochemical study of the atmospheric corrosion of mild steel-III. The effect of sulphur dioxide. Corros. Sci. 36, 1193-1199. https://doi.org/10.1016/0010-938X(94)90143-0.
  10. Dai, N., Zhang, J., Chen, Q., Yi, B., Cao, F., Zhang, J., 2015. Effect of the direct current electric field on the initial corrosion of steel in simulated industrial atmospheric environment. Corros. Sci. 99, 295-303. https://doi.org/10.1016/j.corsci.2015.07.029.
  11. DeLuchi, M.A., 1993. Emissions from the production, storage, and transport of crude oil and gasoline. Air Waste 43, 1486-1495. https://doi.org/10.1080/1073161X.1993.10467222.
  12. Everaert, K., Baeyens, J., 2004. Catalytic combustion of volatile organic compounds. J. Hazard Mater. 109, 113-139. https://doi.org/10.1016/j.jhazmat.2004.03.019.
  13. Guidance manual for material selection and inspection of inert gas systems, 1980. American Bureau of Shipping.
  14. Guidelines for the development of a VOC management plan, 2009. Resolution MEPC185(59), IMO.
  15. Gupta, V.K., Verma, N., 2002. Removal of volatile organic compounds by cryogenic condensation followed by adsorption. Chem. Eng. Sci. 57, 2679-2696. https://doi.org/10.1016/S0009-2509(02)00158-6.
  16. Huang, W., Bai, J., Zhao, S., Lv, A., 2011. Investigation of oil vapor emission and its evaluation methods. J. Loss Prev. Process. Ind. 24, 178-186. https://doi.org/10.1016/j.jlp.2010.12.004.
  17. Hung-Lung, C., Jiun-Horng, T., Shih-Yu, C., Kuo-Hsiung, L., Sen-Yi, M., 2007. VOC concentration profiles in an ozone non-attainment area: a case study in an urban and industrial complex metroplex in southern Taiwan. Atmos. Environ. 41, 1848-1860. https://doi.org/10.1016/j.atmosenv.2006.10.055.
  18. International Convention for the Prevention of Pollution from Ships, 2008. MARPOL ANNEX VI Regulation 15 Volatile Organic Compounds, IMO.
  19. Ito, M., Kashima, K., Honda, T., Hara, M., Inami, A., Nishimura, S., 2015. Nippon Steel Sumitomo Metal Technical Report. Corrosion resistant steel plate for crude oil tanker (NSGPTM), vol. 110, pp. 84-89.
  20. Jaworowski, R.J., Mack, S.S., 1979. Evaluation of methods for measurement of $SO_3/H_2SO_4$ in flue gas. J. Air Pollut. Control Assoc. 29, 43-46. https://doi.org/10.1080/00022470.1979.10470750.
  21. Jayne, J.T., Poschl, U., Chen, Y., Dai, D., Molina, L.T., Worsnop, D.R., Kolb, C.E., Molina, M.J., 1997. Pressure and temperature dependence of the gas-phase reaction of $SO_3$ with $H_2O$ and the heterogeneous reaction of $SO_3$ with $H_2O/H_2SO_4$ surfaces. J. Phys. Chem. A 101, 10000-10011. https://doi.org/10.1021/jp972549z.
  22. Kerbachi, R., Boughedaoui, M., Bounoua, L., Keddam, M., 2006. Ambient air pollution by aromatic hydrocarbons in Algiers. Atmos. Environ. 40, 3995-4003. https://doi.org/10.1016/j.atmosenv.2006.02.033.
  23. Khan, F.I., Ghoshal, A. Kr, 2000. Removal of volatile organic compounds from polluted air. J. Loss Prev. Process. Ind. 13, 527-545. https://doi.org/10.1016/S0950-4230(00)00007-3.
  24. Kim, Y.-J., 1999. Analysis of oxide film formed on type 304 stainless steel in $288^{\circ}C$ water containing oxygen, hydrogen, and hydrogen peroxide. Corrosion 55, 81-88. https://doi.org/10.5006/1.3283969.
  25. Kujawa, J., Cerneaux, S., Kujawski, W., 2015. Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes. J. Memb. Sci. 474, 11-19. https://doi.org/10.1016/j.memsci.2014.08.054.
  26. Kumar, S., Mahto, V., 2016. Emulsification of Indian heavy crude oil in water for its efficient transportation through offshore pipelines. Chem. Eng. Res. Des. 115, 34-43. https://doi.org/10.1016/j.cherd.2016.09.017.
  27. Lee, S., Choi, I., Chang, D., 2013. Multi-objective optimization of VOC recovery and reuse in crude oil loading. Appl. Energy 108, 439-447. https://doi.org/10.1016/j.apenergy.2013.03.064.
  28. Marier, P., Dibbs, H.P., 1974. The catalytic conversion of $SO_2$ to $SO_3$ by fly ash and the capture of $SO_2$ and $SO_3$ by CaO and MgO. Thermochim. Acta 8, 155-165. https://doi.org/10.1016/0040-6031(74)85082-3.
  29. Murphy, C.F., Allen, D.T., 2005. Hydrocarbon emissions from industrial release events in the Houston-Galveston area and their impact on ozone formation. Atmos. Environ. 39, 3785-3798. https://doi.org/10.1016/j.atmosenv.2005.02.051.
  30. Panossian, Z., de Almeida, N.L., de Sousa, R.M.F., de Souza Pimenta, G., Marques, L.B.S., 2012. Corrosion of carbon steel pipes and tanks by concentrated sulfuric acid: a review. Corros. Sci. 58, 1-11. https://doi.org/10.1016/j.corsci.2012.01.025.
  31. Pilidis, G.A., Karakitsios, S.P., Kassomenos, P.A., 2005. BTX measurements in a medium-sized European city. Atmos. Environ. 39, 6051-6065. https://doi.org/10.1016/j.atmosenv.2005.06.044.
  32. Seddiek, I.S., Elgohary, M.M., 2014. Eco-friendly selection of ship emissions reduction strategies with emphasis on SOx and NOx emissions. Int. J. Nav. Archit. Ocean Eng. 6, 737-748. https://doi.org/10.2478/IJNAOE-2013-0209.
  33. Seddiek, I.S., Mosleh, M., Banawan, A.A., 2012. Thermo-economic approach for absorption air condition onboard high-speed crafts. Int. J. Nav. Archit. Ocean Eng. 4, 460-476. https://doi.org/10.2478/IJNAOE-2013-0111.
  34. Shonnard, D.R., Hiew, D.S., 2000. Comparative environmental assessments of VOC recovery and recycle design alternatives for a gaseous waste stream. Environ. Sci. Technol. 34, 5222-5228. https://doi.org/10.1021/es0010857.
  35. Singh, D.D.N., Yadav, S., Saha, J.K., 2008. Role of climatic conditions on corrosion characteristics of structural steels. Corros. Sci. 50, 93-110. https://doi.org/10.1016/j.corsci.2007.06.026.
  36. Spivey, J.J., 2005. Catalysis in the development of clean energy technologies. Catal. Today 100, 171-180. https://doi.org/10.1016/j.cattod.2004.12.011.
  37. Standards for vapour emission control systems, MSC/Circ.585, IMO.
  38. Tamaddoni, M., Sotudeh-Gharebagh, R., Nario, S., Hajihosseinzadeh, M., Mostoufi, N., 2014. Experimental study of the VOC emitted from crude oil tankers. Process Saf. Environ. Prot. 92, 929-937. https://doi.org/10.1016/j.psep.2013.10.005.
  39. Tyagi, B., Chudasama, C.D., Jasra, R.V., 2006. Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 64, 273-278. https://doi.org/10.1016/j.saa.2005.07.018.
  40. Yamashita, M., Miyuki, H., Matsuda, Y., Nagano, H., Misawa, T., 1994. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century. Corros. Sci. 36, 283-299. https://doi.org/10.1016/0010-938X(94)90158-9.

Cited by

  1. Adsorption characteristics of volatile organic compounds onto lyocell-based activated carbon fibers vol.29, pp.6, 2019, https://doi.org/10.1007/s42823-019-00063-7
  2. Long-Term Marine Environment Exposure Effect on Butt-Welded Shipbuilding Steel vol.9, pp.5, 2019, https://doi.org/10.3390/jmse9050491
  3. Degradation of toluene by DBD plasma-catalytic method with MnxCoyCezOn catalysts: Characterization of catalyst, catalytic activity and continuous test vol.9, pp.6, 2019, https://doi.org/10.1016/j.jece.2021.106361