DOI QR코드

DOI QR Code

Obstacles modeling method in cluttered environments using satellite images and its application to path planning for USV

  • Shi, Binghua (School of Automation, Wuhan University of Technology) ;
  • Su, Yixin (School of Automation, Wuhan University of Technology) ;
  • Zhang, Huajun (School of Automation, Wuhan University of Technology) ;
  • Liu, Jiawen (School of Automation, Wuhan University of Technology) ;
  • Wan, Lili (School of Automation, Wuhan University of Technology)
  • Received : 2017.06.15
  • Accepted : 2018.04.04
  • Published : 2019.01.31

Abstract

The obstacles modeling is a fundamental and significant issue for path planning and automatic navigation of Unmanned Surface Vehicle (USV). In this study, we propose a novel obstacles modeling method based on high resolution satellite images. It involves two main steps: extraction of obstacle features and construction of convex hulls. To extract the obstacle features, a series of operations such as sea-land segmentation, obstacles details enhancement, and morphological transformations are applied. Furthermore, an efficient algorithm is proposed to mask the obstacles into convex hulls, which mainly includes the cluster analysis of obstacles area and the determination rules of edge points. Experimental results demonstrate that the models achieved by the proposed method and the manual have high similarity. As an application, the model is used to find the optimal path for USV. The study shows that the obstacles modeling method is feasible, and it can be applied to USV path planning.

Keywords

References

  1. Anil, P.N., Natarajan, S., 2013. Road extraction using topological derivative and mathematical morphology. J. Indian. Soc. Rem. Sens. 41 (3), 719-724. https://doi.org/10.1007/s12524-012-0231-6. https://doi.org/10.1007/s12524-012-0231-6.
  2. Bin, L., Tao, W., 2012. An efficient convex hull algorithm for planar point set based on recurisive method. Acta Autom. Sin. 38 (8), 1375-1379. https://doi.org/10.3724/SP.J.1004.2012.01375
  3. Campbell, S., Naeem, W., Irwin, G., 2012. A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres. Annu. Rev. Contr. 36 (2), 267-283. https://doi.org/10.1016/j.arcontrol.2012.09.008. http://www.sciencedirect.com/science/article/pii/S1367578812000430.
  4. Corbane, C., Najman, L., Pecoul, E., Demagistri, L., Petit, M., 2010. A complete processing chain for ship detection using optical satellite imagery. Int. J. Rem. Sens. 31 (22), 5837-5854. https://doi.org/10.1080/01431161.2010.512310 arXiv: https://doi.org/10.1080/01431161.2010.512310. https://doi.org/10.1080/01431161.2010.512310.
  5. Dunn, J.C., 1973. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3 (3), 32-57. https://doi.org/10.1080/01969727308546046
  6. J. Fukuto, H. Imazu, New collision alarm algorithm using obstacle zone by target (ozt), {IFAC} Proceedings Volumes 46(33) (2013) 91-96, 9th {IFAC} Conference on Control Applications in Marine Systems. https://doi.org/10.3182/20130918-4-JP-3022.00044. URL http://www.sciencedirect.com/science/article/pii/S1474667016461392.
  7. Gongxing, W., Shi, D., Guo, J., 2016. Deliberative collision avoidance for unmanned surface vehicle based on the directional weight. J. Shanghai Jiaot. Univ. 21 (3), 307-312. https://doi.org/10.1007/s12204-016-1726-z.
  8. Graham, R., 1972. An efficient algorith for determining the convex hull of a finite planar set. Inf. Process. Lett. 1 (4), 132-133. https://doi.org/10.1016/0020-0190(72)90045-2. http://www.sciencedirect.com/science/article/pii/0020019072900452Crossref.
  9. M. K. Habib, H. Asama, Efficient method to generate collision free paths for an autonomous mobile robot based on new free space structuring approach, in: Intelligent Robots and Systems '91.'Intelligence for Mechanical Systems, Proceedings IROS '91. IEEE/RSJ International Workshop on, 1991, pp. 563-567 vol. 2. 10.1109/IROS.1991.174534.
  10. Hoang, V.-D., Jo, K.-H., 2015. Path planning for autonomous vehicle based on heuristic searching using online images. Vietnam Journal of Computer Science 2 (2), 109-120. https://doi.org/10.1007/s40595-014-0035-4. https://doi.org/10.1007/s40595-014-0035-4.
  11. Kristan, M., Pers, J., Sulic, V., Kovacic, S., 2015. A Graphical Model for Rapid Obstacle Image-map Estimation from Unmanned Surface Vehicles. Springer International Publishing, Cham, pp. 391-406.
  12. Lining, G., Fukun, B., Teng, L., Jian, Y., 2011. Ship detection algorithm for optical remote sensing images. J. Tsinghua Univ. (Sci. Technol.) 51 (1), 105-110. https://doi.org/10.16511/j.cnki.qhdxxb.2011.01.026.
  13. Macqueen, J.B., 1967. Some methods of classification and analysis of multivariate observations. Probab. Math. Stat. 281-297.
  14. Metz, C.E., 1978. Basic principles of roc analysis. Semin. Nucl. Med. 8 (4), 283-298. https://doi.org/10.1016/S0001-2998(78)80014-2. http://www.sciencedirect.com/science/article/pii/S0001299878800142.
  15. Naouai, M., Hamouda, A., Weber, C., 2010. Urban Road Extraction from High-resolution Optical Satellite Images, vol. 4. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 420-433. Ch.
  16. Serra, J., 1982. Mathematical Morphology and Image Analysis, vol. 38. Academic Press, pp. 536-537 (2).
  17. Shi, W., Miao, Z., Debayle, J., 2014. An integrated method for urban main-road centerline extraction from optical remotely sensed imagery. IEEE Trans. Geosci. Rem. Sens. 52 (6), 3359-3372. https://doi.org/10.1109/TGRS.2013.2272593.
  18. Singh, P.P., Garg, R.D., 2013. Automatic road extraction from high resolution satellite image using adaptive global thresholding and morphological operations. J. Indian. Soc. Rem. Sensing. 41 (3), 631-640. https://doi.org/10.1007/s12524-012-0241-4. https://doi.org/10.1007/s12524-012-0241-4.
  19. Singh, N., Arya, R., Agrawal, R., 2016. A convex hull approach in conjunction with Gaussian mixture model for salient object detection. Digit. Signal Process. 55, 22-31. https://doi.org/10.1016/j.dsp.2016.05.003. http://www.sciencedirect.com/science/article/pii/S1051200416300318.
  20. van der Werff, H., van der Meer, F., 2008. Shape-based classification of spectrally identical objects. ISPRS J. Photogrammetry Remote Sens. 63 (2), 251-258. https://doi.org/10.1016/j.isprsjprs.2007.09.007. http://www.sciencedirect.com/science/article/pii/S0924271607001244.
  21. Wang, W., Yang, N., Zhang, Y., Wang, F., Cao, T., Eklund, P., 2016. A review of road extraction from remote sensing images. J. Traffic Transport. Eng. 3 (3), 271-282. https://doi.org/10.1016/j.jtte.2016.05.005. http://www.sciencedirect.com/science/article/pii/S2095756416301076.
  22. Yan, R.-j., Pang, S., Sun, H.-b., Pang, Y.-j., 2010. Development and missions of unmanned surface vehicle. J. Mar. Sci. Appl. 9 (4), 451-457. https://doi.org/10.1007/s11804-010-1033-2. https://doi.org/10.1007/s11804-010-1033-2.
  23. Yang, J.-M., Tseng, C.-M., Tseng, P., 2015. Path planning on satellite images for unmanned surface vehicles. Int. J. Nav. Architect. Ocean Eng. 7 (1), 87-99. https://doi.org/10.1515/ijnaoe-2015-0007. http://www.sciencedirect.com/science/article/pii/S2092678216301030.