DOI QR코드

DOI QR Code

Study on IPT Characteristics of LSR / Nano Silica Composites for HVDC

HVDC용 LSR/Nano Silica Composites의 IPT특성 연구

  • Park, Jae-Jun (Dept. of Electrical and Electronic Engineering, Kiee University)
  • Received : 2018.10.29
  • Accepted : 2018.12.29
  • Published : 2019.01.01

Abstract

Only the power is converted from AC to DC, in accordance with IEC 60587 based test method, in order to develop the LSR(Liquid Silicone Rubber) insulator material for HVDC, the experiment of Inclined Plate Tracking and Erosion Resistance was conducted. A contaminant (2.5 mS/cm: ammonium chloride) was applied at a rate of 0.3 ml/min and a voltage of ${\pm}3.5kV$, and was evaluated on the basis of 60 mA/2s. The samples were prepared by dispersing LSR/Nano silica_25wt% Composites in LSR. The erosion phenomena of surface discharge and tracking due to DC polarity and negative polarity were measured by image, leakage current maximum and thermal camera. The thermal imaging camera measured the surface temperature generated by the joule heat of the leakage current due to the drying discharge and the conductive current. After the measurement, the tracking and erosion mechanisms were evaluated for erosion weight, erosion depth and erosion length. Positive and negative polarity of LSR/Nano Silica_25wt% composite Tracking and erosion results show that positive polarity is more severe than negative polarity.

Keywords

DHJGII_2019_v68n1_61_f0001.png 이미지

그림 1 트래킹 실험시스템 Fig. 1 Tracking experiment system

DHJGII_2019_v68n1_61_f0002.png 이미지

그림 2 실리콘/나노실리카 콤포지트 누설전류 (정극성) Fig. 2 SiR/Nano silica composites leakage current(Positive)

DHJGII_2019_v68n1_61_f0003.png 이미지

그림 3 실험시작으로부터 끝까지 정극성 누설전류 값 Fig. 3 Positive leakage current maximum value from start to end of experiment

DHJGII_2019_v68n1_61_f0004.png 이미지

그림 4 SiR/Nano Silica 콤포지트 누설전류 최대값 Fig. 4 SiR/Nano silica composites leakage current maximum value (Negative)

DHJGII_2019_v68n1_61_f0005.png 이미지

그림 5 실험시작으로부터 끝까지 부극성 누설전류 최대값 Fig. 5 Negative leakage current maximum value from start to end of experiment

DHJGII_2019_v68n1_61_f0006.png 이미지

그림 6 정극성 DC(3.5kV), SiR/nano silica composite의 트래킹 및 침식 영상 (a) 27분, (b) 55분, (c) 60분, (d) 320분 Fig. 6 Tracking and erosion imaging of positive DC (3.5 kV), SiR/nano silica composite

DHJGII_2019_v68n1_61_f0007.png 이미지

그림 7 부극성 DC(-3.5kV), SiR/nano silica composite의 트래킹 및 침식 영상 (a) 27분, (b) 44분, (c) 71분, (d) 220분 Fig. 7 Tracking and erosion imaging of negative DC (-3.5 kV), SiR/nano silica composite (a) 27min, (b) 44min, (c) 71min, (d) 220min

DHJGII_2019_v68n1_61_f0008.png 이미지

그림 8 트래킹 실험 전후 샘플 (b) 정극성 (c) 부극성) Fig. 8 Sample before and after tracking experiment (b) Positive (c) Negative

DHJGII_2019_v68n1_61_f0009.png 이미지

그림 9 누설전류 크기와 전류 펄스 수 Fig. 9 Leakage Current Amplitude and Count

표 4 정극성 및 부극성 트래킹 후 침식량 Table 4 Erosion weight of positive and negative polarity after tracking

DHJGII_2019_v68n1_61_t0001.png 이미지

표 5 그림 9 누설전류 크기의 분류 Table 5 Classification of leakage current amplitude

DHJGII_2019_v68n1_61_t0002.png 이미지

표 6 그림 9의 10mA 이상 누설전류 상세분류 Table 6 Leakage current classification of more than 10 mA in Fig. 9

DHJGII_2019_v68n1_61_t0003.png 이미지

References

  1. Andrej Krivda, Lars E. Schmidt, Xavier Kornmann, Hossein Ghorbani, Ali Ghorbandaeipour, Maria Eriksson and Henrik Hillborg, "Inclined-plane tracking and erosion test according to the IEC 60587 Standard", IEEE Electrical Insulation Magazine, Vol. 25, No. 6, pp. 14-22, 2009. https://doi.org/10.1109/MEI.2009.5313706
  2. G. P. Bruce and S. M. Rowland and A. Krivda, "Performance of Silicone Rubber in DC Inclined Plane Tracking Tests", IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 17, pp. 521-532, 2010. https://doi.org/10.1109/TDEI.2010.5448108
  3. V. M. Moreno and R. S. Gorur, "AC and DC performance of polymeric housing materials for HV outdoor insulators", IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 6, pp. 342-350, 1999. https://doi.org/10.1109/94.775621
  4. L. H. Meyer, S. H. Jayaram and E. A. Cherney, "Correlation of damage, dry band arcing energy, and temperature in inclined plane testing of silicone rubber for outdoor insulation", IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 11, pp. 424-432, 2004.
  5. R. Sarathi, S. Chandrasekar, and N. Yoshimura, "Investigation of Tracking Phenomena in Outdoor Polymeric Insulation Material Under DC Voltages Using Wavelets", IEEE Trans. Power Delivery, Vol. 21, pp. 515-517, 2006.
  6. G. P. Bruce, S. M. Rowland and A. Krivda, "Performance of Silicone Rubber in DC Inclined Plane Tracking Tests", IEEE Trans. Dielectr. Electr. Insul., Vol. 17, pp. 521-532, 2010. https://doi.org/10.1109/TDEI.2010.5448108
  7. Joseph Vimal Vas, B. Venkatesulu and M. Joy Thomas, "Tracking and Erosion of Silicone Rubber Nanocomposites under DC Voltages of both Polarities", IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 19, No. 1; February 2012
  8. N. Loganathan, C. Muniraj,and S. Chandrasekar, "Tracking and Erosion Resistance Performance Investigation on Nano-sized $SiO_2$ Filled Silicone Rubber for Outdoor Insulation Applications", IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 21, No. 5; October 2014
  9. S. M. Rowland, G. P. Bruce, Yuting Liu A. Krivda and L.E. Schmidt,"Use of Image Analysis in DC Inclined Plane Tracking Tests of Nano and Micro Composites", IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 18, No. 2, pp. 365-374, April 2011 https://doi.org/10.1109/TDEI.2011.5739439
  10. L.H. Meyer, S.H. Jayaram and E.A. Cherney, "Correlation of Damage, Dry Band Arcing Energy and Temperature in Inclined Plane Testing of Silicone Rubber for Outdoor Insulation", IEEE Trans. Dielectr. Electr. Insul., Vol. 11, pp. 424-432, 2004.