DOI QR코드

DOI QR Code

A Study of Broad-band Conformal Beam Forming using Moving Least Squares Method

Moving Least Squares 기법을 이용한 광대역 컨포멀 빔 형성 연구

  • Jung, Sang-Hoon (Dept. of Electrical and Computer Engineering, Seoul National University) ;
  • Lee, Kang-In (Dept. of Electronic Convergence Engineering, Kwangwoon University) ;
  • Jung, Hyun-Kyo (Dept. of Electrical and Computer Engineering, Seoul National University) ;
  • Chung, Young-Seek (Dept. of Electronic Convergence Engineering, Kwangwoon University)
  • Received : 2018.10.15
  • Accepted : 2018.12.07
  • Published : 2019.01.01

Abstract

In this paper, beam forming using moving least squares method (MLSM) is studied. In the previous research, the least squares method (LSM), one of the data interpolation methods, was used to determine the desired beam pattern and obtain a beam pattern that minimizes the square of the error with the desired beam pattern. However, LSM has a disadvantage in that the beam pattern can not be formed to satisfy the exact steering angle of the desired beam pattern and the peak sidelobe level (PSLL) condition. To overcome this drawback, MLSM is used for beam forming. In order to verify, the proposed method is applied in beam forming of Bezier platform array antenna which is one of conformal array antenna platform.

Keywords

DHJGII_2019_v68n1_83_f0001.png 이미지

그림 1 Bezier 플랫폼과 제어점 Fig. 1 Bezier platform and control points

DHJGII_2019_v68n1_83_f0002.png 이미지

그림 2 선형 배열 안테나의 빔 패턴과 Taylor 가중치를 적용한빔 패턴 Fig. 2 Beam pattern of linear array antenna and its Taylorweighted beam pattern

DHJGII_2019_v68n1_83_f0003.png 이미지

그림 3 목표 빔 패턴의 위상 보상 결과 Fig. 3 Phase compensation result of the desired beam pattern

DHJGII_2019_v68n1_83_f0004.png 이미지

그림 4 GA를 이용하여 획득한 최적 소자 위치 Fig. 4 Optimum element positions obtained by GA

DHJGII_2019_v68n1_83_f0005.png 이미지

그림 5 LSM을 이용한 최적 빔 형성 결과(주파수 2~6GHz 대역, 조향각 -30º) Fig. 5 Result of optimum beam forming using LSM (Frequency 2~6 GHz, Steering angle -30º)

DHJGII_2019_v68n1_83_f0006.png 이미지

그림 6 MLSM을 이용한 최적 빔 형성 결과(주파수 2~6GHz 대역, 조향각 -30º) Fig. 6 Result of optimum beamforming using MLSM (Frequency 2~6 GHz, Steering angle -30º)

DHJGII_2019_v68n1_83_f0007.png 이미지

그림 7 LSM을 이용한 최적 빔 형성 결과(주파수 2~6GHz 대역, 조향각 0º) Fig. 7 Result of optimum beam forming using LSM (Frequency 2~6 GHz, Steering angle 0º)

DHJGII_2019_v68n1_83_f0008.png 이미지

그림 8 MLSM을 이용한 최적 빔 형성 결과(주파수 2~6GHz 대역, 조향각 0º) Fig. 8 Result of optimum beam forming using MLSM (Frequency 2~6 GHz, Steering angle 0º)

DHJGII_2019_v68n1_83_f0009.png 이미지

그림 9 LSM을 이용한 최적 빔 형성 결과(주파수 2~6GHz 대역, 조향각 30º) Fig. 9 Result of optimum beam forming using LSM (Frequency 2~6 GHz, Steering angle 30º)

DHJGII_2019_v68n1_83_f0010.png 이미지

그림 10 MLSM을 이용한 최적 빔 형성 결과(주파수 2~6GHz 대역, 조향각 30º) Fig. 10 Result of optimum beam forming using MLSM (Frequency 2~6 GHz, Steering angle 30º)

DHJGII_2019_v68n1_83_f0011.png 이미지

그림 11 조향각과 주파수에 따른 LSM과 MLSM의 PSLL 비교 Fig. 11 PSLL comparison between LSM and MLSM according to steering angle and frequency

DHJGII_2019_v68n1_83_f0012.png 이미지

그림 12 조향각과 주파수에 따른 LSM과 MLSM의 조향각 비교 Fig. 12 Steering angle comparison between LSM and MLSM according to steering angle and frequency

표 1 3차원 Bezier 곡선의 제어점 Table 1 Control points of the 3-D Bezier curve

DHJGII_2019_v68n1_83_t0001.png 이미지

표 2 GA 파라미터 Table 2 Parameters of GA

DHJGII_2019_v68n1_83_t0002.png 이미지

표 3 시뮬레이션 조건 Table 3 Condition of simulation

DHJGII_2019_v68n1_83_t0003.png 이미지

표 4 LSM과 MLSM의 평균 PSLL, 메인 빔의 조향각 비교 Table 4 Mean PSLL and steering angle comparison of LSM and MLSM

DHJGII_2019_v68n1_83_t0004.png 이미지

References

  1. Vaskelainen, Leo I., "Constrained least-squares optimization in conformal array antenna synthesis", IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, pp. 859-867, 2007. https://doi.org/10.1109/TAP.2007.891860
  2. Xie, Wenchong, et al., "Clutter suppression for airborne phased radar with conformal arrays by least squares estimation", Signal Processing, Vol. 91, No. 7, pp. 1665-1669, 2011. https://doi.org/10.1016/j.sigpro.2011.01.009
  3. Sang-Hoon Jung, et al, "Beam Forming Study and Optimum Antenna Location Selection for Wideband Conformal Array Antenna", The Journal of Korean Institute of Electromagnetic Engineering and Science, Vol. 27 No. 2, pp. 138-146, 2016. https://doi.org/10.5515/KJKIEES.2016.27.2.138
  4. Nealen, Andrew, "An as-short-as-possible introduction to the least squares, weighted least squares and moving least squares methods for scattered data approximation and interpolation", URL: http://www.nealen.com/projects, 130.150 : 25, 2004.
  5. Zadeh, Parviz M., Vassili V. Toropov, and Alastair S. Wood, "Use of moving least squares method in collaborative optimization", 6th World Congresses of Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil, 2005.
  6. Levin, David, "The approximation power of moving least-squares", Mathematics of Computation of the American Mathematical Society, Vol. 67, No. 224 pp. 1517-1531, 1998. https://doi.org/10.1090/S0025-5718-98-00974-0
  7. Conte, Samuel Daniel, and Carl De Boor, Elementary numerical analysis: an algorithmic approach, Vol. 78, SIAM, 2017.
  8. Cinque, Luigi, Stefano Levialdi, and Alessio Malizia, "Shape description using cubic polynomial Bezier curves", Pattern Recognition Letters, Vol. 19, No. 9, pp. 821-828, 1998. https://doi.org/10.1016/S0167-8655(98)00069-5
  9. Ohsung Kwon, "A Study on Wideband Beam Synthesis Algorithm for Conformal Array", Master Thesis, Kwangwoon University, pp. 1-2, 17-20, 2014.
  10. Harry L. Van Trees, "Detection, Estimation, and Modulation Theory", Optimum Array Processing, John Wiley & Sons, pp. 143-149, 2004.
  11. Mitchell, Melanie, An introduction to genetic algorithms, MIT press, 1998.
  12. Whitley, Darrell, "A genetic algorithm tutorial", Statistics and computing, Vol. 4, No. 2, pp. 65-85, 1994. https://doi.org/10.1007/BF00175354
  13. Jang-Ho Seo, et al, "Optimal design of electric machine by statistical method", The Proceedings of KIEE, Vol. 54, No. 9, pp. 16-23, 2005.
  14. Chang-Seob Kwak, et al, "Shape Optimization of High Voltage Gas Circuit Breaker Using Kriging-Based Model and Genetic Algorithm", The Transactions of the Korean Institute of Electrical Engineers, Vol. 62, No. 2, pp. 177-183, 2013. https://doi.org/10.5370/KIEE.2013.62.2.177