DOI QR코드

DOI QR Code

Noise Reduction Algorithm For The Detection of Fine Ion Signals in Residual Gas Analyzer

잔류가스분석기의 질량 스펙트럼 검출 성능 향상을 위한 잡음제거 알고리즘

  • Heo, Gyeongyong (Dept. of Electronic Engineering, Dongeui University) ;
  • Choi, Hun (Dept. of Electronic Engineering, Dongeui University)
  • Received : 2018.10.01
  • Accepted : 2018.12.03
  • Published : 2019.01.01

Abstract

This paper proposes a method to improve the mass spectral detection performance of the residual gas analyzer. By improving the mode estimation method for setting the threshold value and improving the additive noise elimination method, it is possible to detect mass spectrums having low peak values of the threshold level difficult to distinguish from noise. Ion signal blocks for each mass index with noise removed by the improved method are effective for eliminating invalid ion signals based on the linear and quadratic fittings. The mass spectrum can be obtained from the quadratic fitted curves for the reconstructed ion signal block using only the valid ion signals. In addition, the resolution of the mass spectrum can be improved by correcting the error caused by the shift of the spectral peak position. To verify the performance of the proposed method, computer simulations were performed using real ion signals obtained from the residual gas analysis system under development. The simulation results show that the proposed method is valid.

Keywords

DHJGII_2019_v68n1_102_f0001.png 이미지

그림 1 개발 중인 잔류가스분석기 구성도 Fig. 1 Configuration of residual gas analyzer under development

DHJGII_2019_v68n1_102_f0002.png 이미지

그림 2 이상적인 질량 스펙트럼과 잡음의 1차 및 2차 피팅 특성 Fig. 2 Linear and quadratic fitting characteristics for ideal mass spectrum and noise

DHJGII_2019_v68n1_102_f0003.png 이미지

그림 3 입력으로 사용한 이온신호 (a) SF6, (b) 잔류가스 Fig. 3 Ion signals as input (a) SF6, (b) residual gas

DHJGII_2019_v68n1_102_f0004.png 이미지

그림 4 SF6에 대한 전처리 잡음제거 결과 (a) 추정한 최빈값으로 설정한 임계값, (b) 기존 알고리즘의 결과, (c) 제안한 알고리즘의 결과 Fig. 4 Results of pre-denoising processing for SF6 (a) threshold value set as the estimated mode (b) result of the conventional algorithm, (c) result of the proposed algorithm

DHJGII_2019_v68n1_102_f0005.png 이미지

그림 5 잔류가스에 대한 전처리 잡음제거 결과 (a) 추정한 최빈값으로 설정한 임계값, (b) 기존 알고리즘의 결과, (c) 제안한 알고리즘의 결과 Fig. 5 Results of pre-denoising processing for residual gas (a) threshold value set as the estimated mode (b) result of the conventional algorithm, (c) result of the proposed algorithm

DHJGII_2019_v68n1_102_f0006.png 이미지

그림 6 SF6 입력에 대한 기존 알고리즘과 제안한 알고리즘의 최종 질량 스펙트럼 검출 성능 비교 (a) 취득 이온신호, (b) 기존 알고리즘의 결과, (c) 제안한 알고리즘의 결과 Fig. 6 Comparison of detection performance of the final mass spectrum of the conventional algorithm and the proposed algorithm for the SF6 (a) measured ion signals, (b) result of the conventional algorithm, (c) result of the proposed algorithm

DHJGII_2019_v68n1_102_f0007.png 이미지

그림 7 잔류가스 입력에 대한 기존 알고리즘과 제안한 알고리즘의 최종 질량 스펙트럼 검출 성능 비교 (a) 취득 이온 신호, (b) 기존 알고리즘의 결과, (c) 제안한 알고리즘의 결과 Fig. 7 Comparison of detection performance of the final mass spectrum of the conventional algorithm and the proposed algorithm for the residual gas (a) measured ion signals, (b) result of the conventional algorithm, (c) result of the proposed algorithm

References

  1. S. Sujithra, P. Sreelatha, and S. E. Lawrence, "Development of control algorithm for quadrupole mass spectrometer using LabVIEW", in Proceedings of the 2014 International Conference on Electronics and Communication Systems, pp. 1-5, 2014.
  2. B. L. Smith, F. P. M. Jjunju, S. Taylor, I. S. Young, S. Maher, "Development of a portable, low cost, plasma ionization source coupled to a mass spectrometer for surface analysis", in Proceedings of the Conference of 2106 IEEE Sensors, pp. 1-3, 2016.
  3. R. E. Finnigan, "Quadrupole mass spectrometers", Analytical Chemistry, vol. 66, No 19, pp. 969A-975A, Oct. 1994. https://doi.org/10.1021/ac00091a002
  4. S. Sujithra, P. Sreelatha, and S.E. Lawrence, "Development of control algorithm for quadrupole mass spectrometer using LabVIEW", in Proceedings of the 2014 International Conference on Electronics and Communication Systems, pp. 1-5, 2014.
  5. C. J. Park, "Operating Principle of Residual Gas Analyzer", Journal of the Korean Vacuum Society, Vol. 17, No. 4, pp. 262-269, July 2008. https://doi.org/10.5757/JKVS.2008.17.4.262
  6. H. Choi and I. Lee, "Additive Noise Reduction Algorithm for Mass Spectrum Analyzer", Journal of the Korea Institute of Information and Communication Engineering, Vol. 22, No. 1, pp. 1-9, Jan. 2018. https://doi.org/10.6109/jkiice.2018.22.1.1
  7. H. Choi, "Algorithm to Improve Mass Spectral Resolution of Gas Chromatography Mass Spectrometer", The Transactions of the Korean Institute of Electrical Engineers, Vol. 67, No. 9, pp. 1232-1238, Sep. 2018. https://doi.org/10.5370/KIEE.2018.67.9.1232
  8. A. V. Oppenheim and R. W, Schafer, Discrete-Time Signal Processing, 2nd ed. New Jersey, Prentice-Hall, 1999.