DOI QR코드

DOI QR Code

Guidance Scheme for Air-to-Ground Anti-tank Missiles Under Physical Constraints

물리적 구속조건을 고려한 공대지 대전차 유도탄의 유도기법 연구

  • Received : 2018.11.29
  • Accepted : 2018.12.24
  • Published : 2019.01.01

Abstract

A composite guidance scheme is proposed for air-to-ground anti-tank missiles launched from an airborne platform. Long-range anti-tank missiles usually use a fiber optic line (FOL) for the datalink between an operator and the missile to obtain real-time target information and to command the missile. Also, impact angle control is used to maximize the warhead effectiveness, but it should be carefully implemented due to interference between the launch platform and the FOL. Thus, the proposed guidance scheme takes into account both impact angle and FOL constraints. Under system lag and acceleration limits, a selection method of guidance gains and calculation logic of the maximum achievable impact angle are proposed for a guideline of practical implementation. The performance of the proposed guidance scheme is investigated by nonlinear simulations with various engagement conditions.

Keywords

DHJGII_2019_v68n1_145_f0001.png 이미지

그림 1 호밍 유도 기하 Fig. 1 Homing guidance geometry

DHJGII_2019_v68n1_145_f0002.png 이미지

그림 2 최대 달성 가능한 충돌각 계산 로직 Fig. 2 Calculation logic of maximum achievable impact angle

DHJGII_2019_v68n1_145_f0003.png 이미지

그림 3 비행 경로각 제어의 유도 루프 Fig. 3 Guidance loop of flight path angle control

DHJGII_2019_v68n1_145_f0004.png 이미지

그림 4 비행궤적 (Case 1) Fig. 4 Missile trajectory (Case 1)

DHJGII_2019_v68n1_145_f0005.png 이미지

그림 5 비행 경로각 (Case 1) Fig. 5 Flight path angle (Case 1)

DHJGII_2019_v68n1_145_f0006.png 이미지

그림 6 광섬유 (Case 1) Fig. 6 Fiber optic line (Case 1)

DHJGII_2019_v68n1_145_f0007.png 이미지

그림 7 가속도 (Case 1) Fig. 7 Acceleration (Case 1)

DHJGII_2019_v68n1_145_f0008.png 이미지

그림 8 비행궤적 (Case 2) Fig. 8 Missile trajectory (Case 2)

DHJGII_2019_v68n1_145_f0009.png 이미지

그림 9 비행 경로각 (Case 2) Fig. 9 Flight path angle (Case 2)

DHJGII_2019_v68n1_145_f0010.png 이미지

그림 10 광섬유 (Case 2) Fig. 10 Fiber optic line (Case 2)

DHJGII_2019_v68n1_145_f0011.png 이미지

그림 11 가속도 - 실선: 명령, 점선: 응답 (Case 2) Fig. 11 Acceleration – solid line: command, dotted line: response (Case 2)

DHJGII_2019_v68n1_145_f0012.png 이미지

그림 12 유도이득, N (Case 2) Fig. 12 Guidance gain, N (Case 2)

References

  1. W. H. Yang, S. S. Kim, Y. S. Lee, and K. G. Cho, "Optical Communication Related to Wired Data Link for Air to Ground Missile," KIMST Annual Conference Proceedings, pp. 1587-1588, 2016.
  2. B. S. Kim, J. G. Lee and H. S. Han, "Biased PNG Law for Impact with Angular Constraint," IEEE Transactions on Aerospace and Electronic Systems, Vol. 34, No. 1, pp. 277-288, 1998. https://doi.org/10.1109/7.640285
  3. C. K. Ryoo, H. Cho, and M. J. Tahk, "Optimal Guidance Laws with Terminal Impact Angle Constraint," Journal of Guidance, Control and Dynamics, Vol. 28, No. 4, pp. 724-732, 2005. https://doi.org/10.2514/1.8392
  4. A. Ratnoo and D. Ghose, "Impact Angle Constrained Interception of Stationary Targets," Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6, pp. 1816-1821, 2008.
  5. T. H. Kim, B. G. Park, and M. J. Tahk, "Bias-Shaping Method for Biased Proportional Navigation with Terminal-Angle Constraint," Journal of Guidance, Control and Dynamics, Vol. 36, No. 6, pp. 1810-1816, 2013. https://doi.org/10.2514/1.59252
  6. B. G. Park, T. H. Kim, M. J. Tahk, and Y. H. Kim, "Composite Guidance Law for Impact Angle Control of Passive Homing Missiles," Journal of the Korean Society for Aeronautical and Space Science, Vol. 42, No. 1, pp. 20-28, 2014. https://doi.org/10.5139/JKSAS.2014.42.1.20
  7. R. Tekin and K. S. Erer, "Switched-gain Guidance for Impact Angle Control Under Physical Constraints," Journal of Guidance, Control and Dynamics, Vol. 38, No. 2, pp. 205-216, 2015. https://doi.org/10.2514/1.G000766
  8. B. G. Park, T. Y. Um, and P. S. Kim, "Impact Angle Control Guidance Scheme with Fiber Optic Line Constraint," KIMST Annual Conference Proceedings, pp. 1805-1806, 2018.