DOI QR코드

DOI QR Code

GS-KG9 ameliorates diabetic neuropathic pain induced by streptozotocin in rats

  • Lee, Jee Youn (Age-Related and Brain Diseases Research Center, Kyung Hee University) ;
  • Choi, Hae Young (Age-Related and Brain Diseases Research Center, Kyung Hee University) ;
  • Park, Chan Sol (KHU-KIST Department of Converging Science and Technology, Kyung Hee University) ;
  • Pyo, Mi Kyung (International Ginseng and Herb Research Institute) ;
  • Yune, Tae Young (Age-Related and Brain Diseases Research Center, Kyung Hee University) ;
  • Kim, Go Woon (Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Kyung Hee University) ;
  • Chung, Sung Hyun (Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Kyung Hee University)
  • Received : 2017.02.21
  • Accepted : 2017.08.07
  • Published : 2019.01.15

Abstract

Background: Diabetic neuropathy is one of the most devastating ailments of the peripheral nervous system. Neuropathic pain develops in ~30% of diabetics. Here, we examined the suppressive effect of GS-KG9 on neuropathic pain induced by streptozotocin (STZ). Methods: Hyperglycemia was induced by intraperitoneal injection of STZ. Rats showing blood glucose level > 250 mg/dL were divided into five groups, and treatment groups received oral saline containing GS-KG9 (50 mg/kg, 150 mg/kg, or 300 mg/kg) twice daily for 4 wk. The effects of GS-KG9 on pain behavior, microglia activation in the lumbar spinal cord and ventral posterolateral (VPL) nucleus of the thalamus, and c-Fos expression in the dorsal horn of the lumbar spinal cord were examined. Results: The development of neuropathic pain began at Day 5 and peaked at Week 4 after STZ injection. Mechanical and thermal pains were both significantly attenuated in GS-KG9-treated groups from 10 d after STZ injection as compared to those in the STZ control. GS-KG9 also repressed microglia activation in L4 dorsal horn and VPL region of the thalamus. In addition, increase in c-Fos-positive cells within L4 dorsal horn lamina I and II of the STZ control group was markedly alleviated by GS-KG9. Conclusion: These results suggest that GS-KG9 effectively relieves STZ-induced neuropathic pain by inhibiting microglial activation in the spinal cord dorsal horn and VPL region of the thalamus.

Keywords

References

  1. Leinonen A, Hiilesmaa V, Andersen H, Teramo K, Kaaja R. Diurnal blood glucose profiles in women with gestational diabetes with or without hypertension. Diabet Med 2004;21:1181-4. https://doi.org/10.1111/j.1464-5491.2004.01314.x
  2. Martins JO, Wittlin BM, Anger DB, Martins DO, Sannomiya P, Jancar S. Early phase of allergic airway inflammation in diabetic rats: role of insulin on the signaling pathways and mediators. Cell Physiol Biochem 2010;26:739-48. https://doi.org/10.1159/000322341
  3. Xu JT, Xin WJ, Zang Y, Wu CY, Liu XG. The role of tumor necrosis factor-alpha in the neuropathic pain induced by lumbar 5 ventral root transection in rat. Pain 2006;123:306-21. https://doi.org/10.1016/j.pain.2006.03.011
  4. Sommer C, Kress M. Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett 2004;361:184-7. https://doi.org/10.1016/j.neulet.2003.12.007
  5. Park JS, Park EM, Kim DH, Jung K, Jung JS, Lee EJ, Hyun JW, Kang JL, Kim HS. Anti-inflammatory mechanism of ginseng saponins in activated microglia. J Neuroimmunol 2009;209:40-9. https://doi.org/10.1016/j.jneuroim.2009.01.020
  6. Jang M, Lee MJ, Choi JH, Kim EJ, Nah SY, Kim HJ, Lee S, Lee SW, Kim YO, Cho IH. Ginsenoside Rb1 attenuates acute inflammatory nociception by inhibition of neuronal ERK phosphorylation by regulation of the Nrf2 and NF-${\kappa}B$ pathways. J Pain 2016;17:282-97. https://doi.org/10.1016/j.jpain.2015.10.007
  7. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994;53:55-63. https://doi.org/10.1016/0165-0270(94)90144-9
  8. Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1994;32:77-88. https://doi.org/10.1016/0304-3959(88)90026-7
  9. Yune TY, Lee JY, Jung GY, Kim SJ, Jiang MH, Kim YC, Oh YJ, Markelonis GJ, Oh TH. Minocycline alleviates death of oligodendrocytes by inhibiting pronerve growth factor production in microglia after spinal cord injury. J Neurosci 2007;27:7751-61. https://doi.org/10.1523/JNEUROSCI.1661-07.2007
  10. Hains BC, Waxman SG. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci 2006;26:4308-17. https://doi.org/10.1523/JNEUROSCI.0003-06.2006
  11. Wodarski R, Clark AK, Grist J, Marchand F, Malcangio M. Gabapentin reverses microglial activation in the spinal cord of streptozotocin-induced diabetic rats. Eur J Pain 2009;13:807-11. https://doi.org/10.1016/j.ejpain.2008.09.010
  12. Toth CC, Jedrzejewski NM, Ellis CL, Frey 2nd WH. Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathic pain. Mol Pain 2010;17:6-16.
  13. Suzuki N, Hasegawa-Moriyama M, Takahashi Y, Kamikubo Y, Sakurai T, Inada E. Lidocaine attenuates the development of diabetic-induced tactile allodynia by inhibiting microglial activation. Anesth Analg 2011;113:941-6. https://doi.org/10.1213/ANE.0b013e31822827a2
  14. Morgado C, Pereira-Terra P, Cruz CD, Tavares I. Minocycline completely reverses mechanical hyperalgesia in diabetic rats through microglia-induced changes in the expression of the potassium chloride co-transporter 2 (KCC2) at the spinal cord. Diabetes Obes Metab 2011;13:150-9. https://doi.org/10.1111/j.1463-1326.2010.01333.x
  15. Zychowska M, Rojewska E, Kreiner G, Nalepa I, Przewlocka B, Mika J. Minocycline influences the anti-inflammatory interleukins and enhances the effectiveness of morphine under mice diabetic neuropathy. J Neuroimmunol 2013;262:35-45. https://doi.org/10.1016/j.jneuroim.2013.06.005
  16. Cheng KI, Wang HC, Chuang YT, Chou CW, Tu HP, Yu YC, Chang LL, Lai CS. Persistent mechanical allodynia positively correlates with an increase in activated microglia and increased P-p38 mitogen-activated protein kinase activation in streptozotocin-induced diabetic rats. Eur J Pain 2014;18:162-73. https://doi.org/10.1002/j.1532-2149.2013.00356.x
  17. Silva M, Amorim D, Almeida A, Tavares I, Pinto-Ribeiro F, Morgado C. Pronociceptive changes in the activity of rostroventromedial medulla (RVM) pain modulatory cells in the streptozotocin-diabetic rat. Brain Res Bull 2013;96:39-44. https://doi.org/10.1016/j.brainresbull.2013.04.008
  18. Schreiber AK, Nones CF, Reis RC, Chichorro JG, Cunha JM. Diabetic neuropathic pain: physiopathology and treatment. World J Diabetes 2015;6:432-44. https://doi.org/10.4239/wjd.v6.i3.432
  19. Naderi A, Asgari AR, Zahed R, Ghanbari A, Samandari R, Jorjani M. Estradiol attenuates spinal cord injury-related central pain by decreasing glutamate levels in thalamic VPL nucleus in male rats. Metab Brain Dis 2014;29:763-70. https://doi.org/10.1007/s11011-014-9570-z
  20. Chen X, Levine JD. Hyper-responsivity in a subset of C-fiber nociceptors in a model of painful diabetic neuropathy in the rat. Neuroscience 2001;102:185-92. https://doi.org/10.1016/S0306-4522(00)00454-1
  21. Chen SR, Pan HL. Hypersensitivity of spinothalamic tract neurons associated with diabetic neuropathic pain in rats. J Neurophysiol 2002;87:2726-33. https://doi.org/10.1152/jn.2002.87.6.2726
  22. Huber JD, Campos CR, Mark KS, Davis TP. Alterations in blood-brain barrier ICAM-1 expression and brain microglial activation after lambda-carrageenaninduced inflammatory pain. Am J Physiol Heart Circ Physiol 2006;290:H732-40. https://doi.org/10.1152/ajpheart.00747.2005
  23. Zhao P, Waxman SG, Hains BC. Modulation of thalamic nociceptive processing after spinal cord injury through remote activation of thalamic microglia by cysteine chemokine ligand 21. J Neurosci 2007;27:8893-902. https://doi.org/10.1523/JNEUROSCI.2209-07.2007
  24. Wasserman JK, Koeberle PD. Development and characterization of a hemorrhagic rat model of central post-stroke pain. Neuroscience 2009;161:173-83. https://doi.org/10.1016/j.neuroscience.2009.03.042
  25. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK, Park JH. Steaming of ginseng at high temperature enhances biological activity. J Nat Prod 2000;63:1702-4. https://doi.org/10.1021/np990152b
  26. Sun S, Qi LW, Du GJ, Mehendale SR, Wang CZ, Yuan CS. Red notoginseng: higher ginsenoside content and stronger anticancer potential than Asian and American ginseng. Food Chem 2011;125:1299-305. https://doi.org/10.1016/j.foodchem.2010.10.049
  27. Rasmussen PV, Sindrup SH, Jensen TS, Bach FW. Symptoms and signs in patients with suspected neuropathic pain. Pain 2004;110:461-9. https://doi.org/10.1016/j.pain.2004.04.034
  28. Jolivalt CG, Lee CA, Ramos KM, Calcutt NA. Allodynia and hyperalgesia in diabetic rats are mediated by GABA and depletion of spinal potassiumchloride cotransporters. Pain 2008;140:48-57. https://doi.org/10.1016/j.pain.2008.07.005
  29. Said G. Diabetic neuropathy - a review. Nat Clin Pract Neurol 2007;3:331-40. https://doi.org/10.1038/ncpneuro0504
  30. Calcutt NA. Potential mechanisms of neuropathic pain in diabetes. Int Rev Neurobiol 2002;50:205-28. https://doi.org/10.1016/S0074-7742(02)50078-7
  31. Courteix C, Bardin M, Massol J, Fialip J, Lavarenne J, Eschalier A. Daily insulin treatment relieves long-term hyperalgesia in streptozotocin diabetic rats. Neuroreport 1996;7:1922-4. https://doi.org/10.1097/00001756-199608120-00010
  32. Obrosova IG. Diabetic painful and insensate neuropathy: pathogenesis and potential treatments. Neurotherapeutics 2009;6:638-47. https://doi.org/10.1016/j.nurt.2009.07.004
  33. Obrosova IG. Diabetes and the peripheral nerve. Biochim Biophys Acta 2009;1792:931-40. https://doi.org/10.1016/j.bbadis.2008.11.005
  34. Austin PJ, Moalem-Taylor G. The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines. J Neuroimmunol 2010;229:26-50. https://doi.org/10.1016/j.jneuroim.2010.08.013
  35. Galloway C, Chattopadhyay M. Increases in inflammatory mediators in DRG implicate in the pathogenesis of painful neuropathy in Type 2 diabetes. Cytokine 2013;63:1-5. https://doi.org/10.1016/j.cyto.2013.04.009
  36. Tsuda M, Ueno H, Kataoka A, Tozaki-Saitoh H, Inoue K. Activation of dorsal horn microglia contributes to diabetes-induced tactile allodynia via extracellular signal-regulated protein kinase signaling. Glia 2008;56:378-86. https://doi.org/10.1002/glia.20623
  37. Pabreja K, Dua K, Sharma S, Padi SS, Kulkarni SK. Minocycline attenuates the development of diabetic neuropathic pain: possible anti-inflammatory and antioxidant mechanisms. Eur J Pharmacol 2011;661:15-21. https://doi.org/10.1016/j.ejphar.2011.04.014
  38. Jung GY, Lee JY, Rhim H, Oh TH, Yune TY. An increase in voltage-gated sodium channel current elicits microglial activation followed inflammatory responses in vitro and in vivo after spinal cord injury. Glia 2013;61:1807-21. https://doi.org/10.1002/glia.22559
  39. Hong S, Morrow TJ, Paulson PE, Isom LL, Wiley JW. Early painful diabetic neuropathy is associated with differential changes in tetrodotoxin-sensitive and -resistant sodium channels in dorsal root ganglion neurons in the rat. J Biol Chem 2004;279:29341-50. https://doi.org/10.1074/jbc.M404167200
  40. Sun YM, Su Y, Li J, Tian Y, Wang LF. Role of the Na(+)/H(+) exchanger on the development of diabetes mellitus and its chronic complications. Biochem Biophys Res Commun 2012;427:229-31. https://doi.org/10.1016/j.bbrc.2012.09.050
  41. Kawahara H, Sakamoto A, Takeda S, Onodera H, Imaki J, Ogawa R. A prostaglandin E2 receptor subtype EP1 receptor antagonist (ONO-8711) reduces hyperalgesia, allodynia, and c-fos gene expression in rats with chronic nerve constriction. Anesth Analg 2001;93:1012-7. https://doi.org/10.1097/00000539-200110000-00043
  42. Hossaini M, Duraku LS, Kohli SK, Jongen JL, Holstege JC. Spinal distribution of c-Fos activated neurons expressing enkephalin in acute and chronic pain models. Brain Res 2014;1543:83-92. https://doi.org/10.1016/j.brainres.2013.10.044
  43. Siddall PJ, Xu CL, Floyd N, Keay KA. C-fos expression in the spinal cord of rats exhibiting allodynia following contusive spinal cord injury. Brain Res 1999;851:281-6. https://doi.org/10.1016/S0006-8993(99)02173-3
  44. Pertovaara A, Wei H, Kalmari J, Ruotsalainen M. Pain behavior and response properties of spinal dorsal horn neurons following experimental diabetic neuropathy in the rat: modulation by nitecapone, a COMT inhibitor with antioxidant properties. Exp Neurol 2001;167:425-34. https://doi.org/10.1006/exnr.2000.7574
  45. LeBlanc BW, Zerah ML, Kadasi LM, Chai N, Saab CY. Minocycline injection in the ventral posterolateral thalamus reverses microglial reactivity and thermal hyperalgesia secondary to sciatic neuropathy. Neurosci Lett 2011;498:138-42. https://doi.org/10.1016/j.neulet.2011.04.077
  46. Bae MY, Cho JH, Choi IS, Park HM, Lee MG, Kim DH, Jang IS. Compound K, a metabolite of ginsenosides, facilitates spontaneous GABA release onto CA3 pyramidal neurons. J Neurochem 2010;114:1085-96. https://doi.org/10.1111/j.1471-4159.2010.06833.x
  47. Park JS, Shin JA, Jung JS, Hyun JW, Van Le TK, Kim DH, Park EM, Kim HS. Antiinflammatory mechanism of compound K in activated microglia and its neuroprotective effect on experimental stroke in mice. J Pharmacol Exp Ther 2012;341:59-67. https://doi.org/10.1124/jpet.111.189035

Cited by

  1. The neuroprotective effects of micronized PEA (PEA‐m) formulation on diabetic peripheral neuropathy in mice vol.33, pp.10, 2019, https://doi.org/10.1096/fj.201900538r
  2. Effect of aerobic exercise on innate immune responses and inflammatory mediators in the spinal cord of diabetic rats vol.16, pp.4, 2020, https://doi.org/10.3920/cep190050