DOI QR코드

DOI QR Code

A Study on the Tidal Energy Yield Capability according to the Yaw Angle in Jangjuk Strait

장죽수도에서의 요각변화에 따른 조류에너지 생산량에 관한 연구

  • Tran, Bao Ngoc (Graduate School of Mokpo National Maritime University) ;
  • Choi, Min Seon (Division of Marine System Engineering, Mokpo National Maritime University) ;
  • Yang, Changjo (Division of Marine System Engineering, Mokpo National Maritime University)
  • Received : 2019.12.06
  • Accepted : 2019.12.27
  • Published : 2019.12.31

Abstract

The interest of researchers and governments in exploiting tidal energy resources is increasing. Jangjuk strait is a place with high tidal energy density potential and is therefore appropriate for the constructing of a tidal turbine farm. In this study, a numerical approach is presented to evaluate the current flow and power potential in Jangjuk strait with an ADCIRC model. Then, the tidal field characteristics are utilized as input parameters for tidal resource calculation with an in-house program. The 1 MW scale tidal energy converter devices are employed and arranged in 4 layouts to investigate the annual energy yield as well as flow deficit due to the wake ef ect at the surveyed area. The best-performed array generates an annual energy yield up to 12.96 GWh/year (without considering the wake effect); this value is reduced by 0.16 GWh/year when accounting for the energy loss caused by the flow deficit. Moreover, by altering the turbine yaw angle during the flood and ebb tides, the impacts of this factor on the energy extraction are analyzed. This indicates that the turbine array attains the maximum tidal power when the turbine yaw angle is at 346° and 164° (clockwise, to the North) for the spring and neap tide in turns.

최근 점점 더 많은 연구자와 정부에서 해양에너지 자원 개발에 대한 관심이 고조되고 있다. 장죽수도는 조류에너지 밀도가 높아 조류 발전소를 건설하기에 적합한 잠재적 후보지 중 하나이다. 따라서 본 연구에서는 ADCIRC 모델을 이용하여 장죽수도의 조류자원의 잠재량을 평가하기 위한 수치적 접근방식을 제시하고, 내부 코드를 이용하여 조석 특성을 입력 매개변수로 활용하여 1 MW급 규모의 조류에너지 변환장치를 대상으로 4개의 레이아웃으로 배열하고 후류 효과로 인한 연간 에너지 생산량에 관한 수치해석을 수행하였다. 그 결과 효율이 가장 좋은 배치는 연간 최대 12.96 GWh/year의 에너지를 생성할 수 있으며, 이 값은 후류 효과로 인한 에너지 손실을 고려하면 연간 0.16 GWh씩 감소될 수 있음을 보였다. 또한, 창낙조 때 터빈 요 각도를 변경함으로써 이 요소가 에너지 추출에 미치는 영향을 분석하였으며, 터빈 배열은 터빈 요 각도가 346°와 164°(북쪽에서 시계 방향으로)일 때 대조기와 소조기에서 차례로 최대 조류 에너지를 얻을 수 있었다.

Keywords

References

  1. Bacopoulos, P.(2006), Analysis, Modeling, and Simulation of the Tides in the Loxahatchee River Estuary (Southeastern Florida), University of Central Florida.
  2. Blain, C., R. Preller, and A. Rivera(2002), Tidal prediction using the advanced circulation model (ADCIRC) and a relocatable PC-based system. Oceanography, Vol. 15, No. 1, pp. 77-87. https://doi.org/10.5670/oceanog.2002.38
  3. Byun, D. S., E. H. Deirdre, and W. J. Jeong(2013), Tidal Current Energy Resources off the South and West Coasts of Korea: Preliminary Observation-Derived Estimates, Energies, Vol. 6, pp. 566-578. https://doi.org/10.3390/en6020566
  4. Esteban, M. and D. Leary(2012), Current developments and future prospects of offshore wind and ocean energy, Appl. Energy, Vol. 90, pp. 128-136. https://doi.org/10.1016/j.apenergy.2011.06.011
  5. Hoang, A. D. and C. J. Yang(2014), Design and performance evaluation of a 10kW scale counter-rotating wind turbine rotor, J. Korean Society of Marine environment & Safety, Vol. 20, No. 1, pp. 104-112. https://doi.org/10.7837/kosomes.2014.20.1.104
  6. Jung, K. Y., Y. J. Ro, and B. J. Kim(2013), Characteristics of Tidal Current and Tidal Residual Current in the Chunsu Bay, Yellow Sea, Korea based on Numerical Modeling Experiments, J. Korean Society of Coastal and Ocean Engineers, Vol. 25, pp. 207-218. https://doi.org/10.9765/KSCOE.2013.25.4.207
  7. Ko, D. H., J. S. Park, and K. S. Lee(2018), Assessment of Tidal current energy potential at Uldolmok in the Southwestern coast of Korea, J. Coast. Res., Vol. 85, pp. 1301-1305. https://doi.org/10.2112/SI85-261.1
  8. Korea Energy Agency(2018), Status and forecast of national energy, In 2018 New & Renewable Energy, pp. 58-59.
  9. Korea Hydrographic and Oceanographic Agency(2010), A Study on Development of Tidal Current Energy Map(I): Based on Measured Tidal Current Speed.
  10. Martin, N. and L. Tao(2018), Three dimensional tidal turbine array simulations using OpenFOAM with dynamic mesh, Ocean Eng., Vol. 147, pp. 629-646. https://doi.org/10.1016/j.oceaneng.2017.10.053
  11. Militello, A. and A. K. Zundel(1999), Surface-Water modeling system tidal constituents toolbox for ADCIRC, Coastal Engineering Technical Note, Vol 4, No. 21, pp. 1-8.
  12. Nguyen, M. H., B. G. Kim, and C. J. Yang(2016), Tidal Farming Optimization around Jangjuk-sudo by Numerical Modelling, J. Fluid Machinery, Vol. 19, No. 4, pp. 54-62. https://doi.org/10.5293/kfma.2016.19.4.054
  13. Ribal, A., K. Amir, S. Toaha, J. Kusuma, and K. Ddin(2017), Tidal Current Energy Resource Assessment Around Buton Island, Southeast Sulawesi, Indonesia, Int. J. Renewable Energy Research, Vol. 7, No. 2, pp. 857-865.