Study of the CatcherTM Couch's Usefulness

토모치료기 CatcherTM Couch의 유용성에 대한 고찰

  • Um, Ki Cheon (Department of Radiation Oncology, Asan Medical Center) ;
  • Lee, Chung Hwan (Department of Radiation Oncology, Asan Medical Center) ;
  • Jeon, Soo Dong (Department of Radiation Oncology, Asan Medical Center) ;
  • Song, Heung Kwon (Department of Radiation Oncology, Asan Medical Center) ;
  • Back, Geum Mun (Department of Radiation Oncology, Asan Medical Center)
  • 엄기천 (서울아산병원 방사선종양학과) ;
  • 이충환 (서울아산병원 방사선종양학과) ;
  • 전수동 (서울아산병원 방사선종양학과) ;
  • 송흥권 (서울아산병원 방사선종양학과) ;
  • 백금문 (서울아산병원 방사선종양학과)
  • Published : 2019.12.27

Abstract

Purpose: Recently, A Catcher was added to prevent sagging in Radixact® X9. In this study, We quantitatively compared general couch of Tomo-HDA® with catcher couch of Radixact® X9 using the human phantom and evaluated usefulness of catcher. Materials and methods: We used rando phantom for phantom study and set the each iso-center of head and neck region and Pelvis region for region parameter. Furthermore, We used hand made low melting point alloys for weight parameter. MVCT(Mega Voltage Computed Tomography) images were acquired for vertical error and rotation(pitch) error measurement increasing weight(A: 15kg, A+B: 30kg, A+B+C: 45kg). We selected 120 patients who has been treated using Tomotherpy machine for patient study. 60 patients has been treated in Tomo-HDA® and the other 60 patients treated in Radixact® X9. In the patient study methods, vertical error and rotation(pitch) error was measured for mean value calculation using MVCT images acquired on first day of radiation therapy. Result: Result of phantom study, Vertical error and rotation(pitch) error was increased proportionally increased as the weight increases in general couch of Tomo-HDA®. each maximum value was 7.52mm, 0.38° in head and neck region and 11.94mm, 0.92° in pelvis region. However, We could confirm that there was stable error range(0.02~0.1mm, 0~0.04°) in Catcher couch of Radixact®. Result of patient study, The head and neck region was measured 4.79mm 0.33° lower, and the pelvis region was measured 7.66mm, 0.22° lower in Catcher couch of Radixact® X9. Conclusion: In this study, Vertical error and rotation(pitch) error was proportionally increased as the weight increases in general couch of Tomo-HDA®. Especially, The pelvis region error was more increased than the head and neck region error. However, Vertical error and rotation(pitch) error was regularly generated regardless of weight or regions in CatcherTM couch of Radixact® X9 that this study's purpose. In conclusion, CatcherTM couch of Radixact® X9 can minimize mechanical error that couch sagging. Furthermore, The pelvis region is more efficiency than head and neck region. In radiation therapy using Tomotherapy machine, it is regarded that may contribute to minimizing unadjusted pitch error due to characters of Tomotherapy.

목 적: 최근 Radixact® X9에서는 치료테이블의 처짐을 방지하는 CatcherTM가 추가되었다. 본 연구에서는 정확한 선량전달을 위한 토모테라피의 메가볼트 전산화단층촬영(MVCT) 영상유도방사선치료 시 Tomo-HDA®의 General Couch와 Radixact® X9의 CatcerTM Couch의 치료테이블 처짐 정도를 팬텀을 이용하여 정량적으로 비교하고 그 유용성을 평가하고자 한다. 대상 및 방법: 팬텀연구를 위해 란도팬텀을 이용하였으며, 치료부위에 따른 변화를 위해 두경부와 골반부에 중심점을 설정하였다. 또한, 무게에 따른 변화를 위해 자체 제작한 저용융점납합금을 이용하였다. 납합금의 무게를 점차 증가시켜(A: 15kg, A+B: 30kg, A+B+C: 45kg) MVCT 영상을 획득하였으며, 수직오차 및 회전(Pitch)오차를 측정하였다. 환자연구를 위해 본원에서 토모테라피를 이용하여 방사선치료를 받은 120명의 환자를 선정하였다. Tomo-HDA®과 Radixact® X9에서 각각 60명씩 치료를 받았으며, 치료부위는 두경부와 골반부로 30명씩 분류하여 선정하였다. 환자연구 방법으로는 치료 첫 날 획득한 MVCT 영상의 척추를 기준으로 수직오차 및 회전(Pitch) 오차를 측정하여 평균값을 산출하였다. 결 과: 팬텀연구 결과 Tomo-HDA®의 General Couch에서는 무게가 증가함에 따라 두경부와 골반부 모두 수직 및 회전(Pitch)오차가 비례하여 증가하였고, 두경부에서 최대 7.52mm, 0.38°, 골반부에서 최대 11.94mm, 0.92° 발생하였다. Radixact® X9의 CatcherTM Couch에서는 0.02~0.1mm, 0~0.04°의 오차범위가 발생하는 것을 확인할 수 있었다. 환자연구 결과 Radixact® X9의 CatcherTM Couch에서 두경부 4.79mm, 0.33°, 골반부 7.66mm, 0.22° 더 낮게 측정되었다. 결 론: 팬텀연구 결과 Tomo-HDA®의 General Couch에서는 무게가 증가함에 따라 수직오차 및 회전(Pitch) 오차가 비례하여 증가하였으며, 특히 두경부보다는 골반부에서 더 많이 증가하였다. 하지만, 본 연구의 목적인 Radixact® X9의 CatcherTM Couch에서는 무게와 부위라는 변수상관 없이 일정한 오차가 발생하였다. 결론적으로 CatcherTM Couch는 Couch 처짐이라는 Mechanical error를 최소화 할 수 있으며, 두경부보다는 골반부에서 더 유용하게 작용한다는 사실을 알 수 있었다. 토모테라피를 이용한 방사선치료 시 Radixact® X9의 CatcherTM Couch를 사용한다면 토모테라피의 특성상 보정할 수 없는 회전(Pitch)오차를 최소화하는데 기여할 수 있을 것이라고 사료된다.

Keywords

References

  1. Michael J. Zellfsky, Zvi Fuks, Laura Happersett, Henry J. Lee, C. Clifton Ling et al: Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiotherapy and Oncology. 2000(55):241-249. https://doi.org/10.1016/S0167-8140(99)00100-0
  2. Gary A. Ezzell, James M. Galvin, Daniel Low, Jatinder R. Palta, Isaac Rosen et al: Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT subcommittee of the AAPM radiation therapy committee. Medical Physics. 2003(30):2089-2115. https://doi.org/10.1118/1.1591194
  3. Gupta, T., Agarwal, J., Jain, S., Phurailatpam, R., Kannan, S., Ghosh-Laskar, S., Prabhash, K.: Threedimension conformal radiotherapy (3D-CRT) versus intensity modulated radiation therapy (IMRT) in squamous cell carcinoma of the head and neck: a randomized controlled trial. Radiotherapy and Oncology. 2012(104-3):343-348. https://doi.org/10.1016/j.radonc.2012.07.001
  4. M. Teoh, C. H. Clark, K. Wood. S. Whitaker, and A Nisbet: Volumetric modulated arc therapy: a review of current literature and clinical use in practice. British Journal of Radiology. 2011(84):967-996. https://doi.org/10.1259/bjr/22373346
  5. E. Vanetti, A. Clivio, and G. Nicolini: Volumetric modulated arc radiotherapy for carcinomas of the oro-pharynx, hypopharynx and larynx: a treatment planning comparison with fixed field IMRT. Radiotherapy & Oncology. 2009(92):111-117. https://doi.org/10.1016/j.radonc.2008.12.008
  6. ICRU, International Commission on Radiation Units and Measurements. Report 62: Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50). Journal of the International Commission on Radiation Units and Measurements. 1999(32-1):1.
  7. David A Jaffray, Ph.D, Jeffrey H Siewerdsen, Ph.D, John W Wong, Ph.D, Alvaro A Martinez, M.D: Flat-panel cone-beam computed tomography for image guided radiation therapy. International Journal of Radiation Oncology. 2002(53):1337-1349. https://doi.org/10.1016/S0360-3016(02)02884-5
  8. Danieal Letourmeau, John W. Wong, Mark Oldham, Misbah Gulam, Lindsay Watt et al: Cone-beam-CT guided radiation therapy: technical implementation. European Society of Radiotherapy and Oncology. 2005(75-3):279-286. https://doi.org/10.1016/j.radonc.2005.03.001
  9. Olivera GH, Shepard DM, Ruchala KJ, et al: "Tomotherapy." In The Modern Technology of Radiation Oncology: A compendium for Medical Physicists and Radiation Oncologists. Madison, WI. 1999:521-587.
  10. Chae Moon Ki, Kwon Dong Yeol, Sun Jong Lyool, Choi Byung Ki: Development of Tomotherapy couch device capable of yaw-directional correction. Journal of KOSRT. 2018(1-2):139-151.
  11. Ha Ryung Park, Yong Ho Kim, Dahl Park, Wontaek Kim, Yongkan Ki, Donghyun Kim, Jin Suk Bae: Analysis of Couch Sag Using Image Processing of MVCT Images in Tomotherapy. MEDICAL PHYSICS. 2015(26):106-111.
  12. Josien P. W. Pluim, J. B. Antoine Maintz and Max A. Viergever: Mutual information based registration of medical images: a survey. IEEE Transactions on medical imaging. 2003.
  13. Witold Kosinski, Pawel Michalak, Piotr Gut: Robust Image Registration Based on Mutual Information Measure. Journal of Signal and Information Processing. 2012(3):175-178. https://doi.org/10.4236/jsip.2012.32023
  14. Weihua Fu, Yong Yang, Xiang Li, Dwight E Heron, M Saiful Huq and Ning J Yue: Dosimetric effects of patient rotational setup errors on prostate IMRT treatments. Phys. Med. Biol. 2006(51):5321-5331. https://doi.org/10.1088/0031-9155/51/20/016