DOI QR코드

DOI QR Code

Analysis of Membrane Fouling Reduction by Natural Convection Instability Flow in Membrane Filtration of Colloidal Solution: Application of Blocking Filtration Model

콜로이드 용액의 막여과에서 자연대류 불안정 흐름의 막오염 저감 효과 해석: 막힘여과 모델의 적용

  • Kim, Ye-Ji (Department of Engineering Chemistry, Chungbuk National University) ;
  • Youm, Kyung-Ho (Department of Engineering Chemistry, Chungbuk National University)
  • 김예지 (충북대학교 공과대학 공업화학과) ;
  • 염경호 (충북대학교 공과대학 공업화학과)
  • Received : 2019.11.25
  • Accepted : 2019.12.16
  • Published : 2019.12.31

Abstract

The constant-pressure and constant-flux membrane filtration experiments of alumina colloidal solution are performed to investigate defouling effect of the natural convection instability flow (NCIF) induced in membrane module. The permeate flux at constant-pressure and the transmembrane pressure (TMP) at constant-flux experiments are measured by changes the inclined angle (0, 90 and 180°) of membrane module to the gravity, and flux results are analyzed by using the blocking filtration model. NCIF are more induced as the inclined angles increased from 0° to 180°, and the maximum induced NCIF at 180° angle enhances flux to 2.8 times and reduces TMP to 85% after two-hour operation. As a result of analyzing flux data by applying the blocking filtration model, it is more reasonable to analyze them by using the intermediate blocking model within 15-minute operation time and then thereafter times by using the cake filtration model. The induced NCIF at 180° angle reduces the intermediate blocking fouling at 52% in the early operation time of 15-minute and thereafter the cake layer fouling at 93%. The main membrane fouling control mechanism of NCIF induced in membrane module is evaluated as suppressing the formation of the cake layer of particulate colloidal materials on membrane surface.

알루미나 콜로이드 용액의 막여과에서 막모듈의 중력에 대한 경사각 변화로 유발된 자연대류 불안정 흐름(natural convection instability flow, NCIF)의 콜로이드 물질의 막오염 제어 효과를 정압(constant-pressure) 막여과 시 플럭스 증가와 정투과량(constant-flux) 막여과 시 막차압 감소 정도로 측정하고, 플럭스 결과를 막힘여과 모델로 해석하였다. 막모듈의 경사각이 0°에서 180°로 커지면 NCIF 유발이 증가하여 막오염 제어 효과가 커져 2시간의 막여과에서 플럭스는 최대 2.8배까지 증가하고, 막차압은 최대 85%까지 감소하였다. 막힘여과 모델을 적용하여 NCIF의 유발에 따른 플럭스 결과를 해석하여 운전 시간 15분 이내에서는 중간막힘모델 그 이후에는 케이크여과모델로 평가하는 것이 타당하였다. 막모듈 경사각 180°에서 유발된 NCIF는 15분 이내의 운전 초기에는 중간막힘 오염을 52% 감소시키고, 그 이후의 운전 시간에서는 케이크층 오염을 93% 감소시켰다. 따라서 막모듈에 유발된 NCIF의 주된 막오염 제어기작은 막표면에의 입자상 콜로이드 물질의 케이크층 형성을 억제시키는 것으로 평가하였다.

Keywords

References

  1. S. Loeb and S. Sourirajan, "Sea water demineralization by means of an osmotic membrane", Adv. Chem. Ser., 38, 117 (1963). https://doi.org/10.1021/ba-1963-0038.ch009
  2. K. H. Youm, H. Y. Lee, and Y. C. Shin, "Water treatment using separation membranes", pp. 25-30, p. 83, Sin-A Publishing, Jeju, Korea (2011).
  3. W. Guo, H. H. Ngo, and J. Li, "A mini-review on membrane fouling", Bioresource Technol., 122, 27 (2012). https://doi.org/10.1016/j.biortech.2012.04.089
  4. P. H. Hermans and H. L. Bredee, "Principles of the mathematical treatment of constant-pressure filtration", J. Soc. Chem. Ind., 55T, 1 (1936).
  5. H. P. Grace, "Structure and performance of filter media", AIChE J., 2, 316 (1956). https://doi.org/10.1002/aic.690020308
  6. J. Hermia, "Constant pressure blocking filtration laws - Application to power-law non-newtonian fluids", Trans. Inst. Chem. Eng., 60, 183 (1982).
  7. Y. J. Kim and K. H. Youm, "Analysis of membrane fouling reduction by natural convection instability flow in membrane filtration of protein solution using blocking filtration model", Membr. J., 29, 18 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.18
  8. E. Iritani, "A review on modeling of pore-blocking behaviors of membranes during pressurized membrane filtration", Drying Technol., 31, 146 (2013). https://doi.org/10.1080/07373937.2012.683123
  9. R. Sondhi, Y. S. Lin, and F. Alvarez, "Crossflow filtration of chromium hydroxide suspension by ceramic membranes: Fouling and its minimization by backpulsing", J. Membr. Sci., 174, 111 (2000). https://doi.org/10.1016/S0376-7388(00)00384-7
  10. K. Y. Chung, J. J. Kim, K. J. Kim, and A. G. Fane, "Microfiltration characteristics for emulsified oil in water", Membr. J., 8, 203 (1998).
  11. S. Mondal and S. De, "A fouling model for steady state crossflow membrane filtration considering sequential intermediate pore blocking and cake formation", Sep. Purif. Technol., 75, 222 (2010). https://doi.org/10.1016/j.seppur.2010.07.016
  12. A. Charfi, H. Jang, and J. Kim, "Hydraulic cleaning effect on fouling mechanisms in pressurized membrane water treatment", Membr. J., 27, 519 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.6.519
  13. K. H. Kroner and V. Nissinen, "Dynamic filtration of microbial suspensions using an axially rotating filter", J. Membr. Sci., 36, 85 (1988). https://doi.org/10.1016/0376-7388(88)80009-7
  14. K. Y. Chung and G. Belfort, "Performance test for membrane module using Dean vortices", Membr. J., 2, 104 (1992).
  15. H. B. Winzeler and G. Belfort, "Enhanced performance for pressure-driven membrane processes: The argument for fluid instabilities", J. Membr. Sci., 80, 35 (1993). https://doi.org/10.1016/0376-7388(93)85130-O
  16. K. H. Youm, A. G. Fane, and D. E. Wiley, "Effects of natural convection instability on membrane performance in dead-end and cross-flow ultrafiltration", J. Membr. Sci., 116, 229 (1996). https://doi.org/10.1016/0376-7388(96)00047-6
  17. Y. J. Cho and K. H. Youm, "Improvement of membrane performance by natural convection instability flow in ultrafiltration of colloidal solutions", Membr. J., 21, 84 (2011).
  18. A. R. Jang, S. W. Nam, and K. H. Youm, "Effect of natural convection instability on reduction of fouling and increasing of critical flux in constant-flow ultrafiltration", Membr. J., 22, 332 (2012).
  19. G. J. Kim and K. H. Youm, "Design of dead-end membrane module with increased permeate flux by natural convection instability flow", Membr. J., 29, 147 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.3.147
  20. F. S. Julio, R. B. Francisco, S. D. Raquel, and G. A. Pedro, "Buoyancy effects in dead-end reverse osmosis: Visualization by holographic interferometry", Ind. Eng. Chem. Res., 46, 1794 (2007). https://doi.org/10.1021/ie061433z