DOI QR코드

DOI QR Code

Preparation of Acrylic Acid Grafted Polypropylene by Electron Beam Irradiation and Heavy Metal Ion Adsorption Property

전자선 조사를 이용한 아크릴산이 그라프트된 폴리프로필렌의 제조 및 중금속 이온 흡착 특성

  • Cheon, Ja young (Industry and Environment Research Division, Korea Atomic Energy Research Institute) ;
  • Jeun, Joon-pyo (Industry and Environment Research Division, Korea Atomic Energy Research Institute)
  • Received : 2019.08.01
  • Accepted : 2019.11.27
  • Published : 2019.12.31

Abstract

In this study, an acrylic acid (AAc) was grafted on a polypropylene (PP) nonwoven fabric using electron beam irradiation. Electron beam grafting was carried out under various conditions to produce AAc grafted PP (PP-g-AAc) nonwoven fabric having a grafting yield of about 50% at radiation dose of 100 kGy and a monomer concentration of 60%. The physical and chemical properties of PP-g-AAc nonwoven fabric were evaluated by SEM, ATR-FTIR, thermal analysis and tensile strength. The morphology of PP and PP-g-AAc nonwoven fabric confirmed by SEM showed no significant change, and it was judged that AAc was introduced into PP nonwoven fabric from ATR-FTIR. PP-g-AAc nonwoven fabric showed an increase in tensile strength and a decrease in tensile strain compared to PP nonwoven fabric. However, since change of value is not significant, it is considered that there is no significant influence on the physical characterization. Adsorption experiments of PP-g-AAc nonwoven fabric on various ions showed selective adsorption behavior for lead ion. In conclusion, the electron beam radiation-induced PP-g-AAc nonwoven fabric is expected to be applied as an effective adsorbent for the adsorption of lead ions.

본 연구는 전자선 조사를 이용하여 폴리프로필렌(polypropylene, PP) 부직포에 아크릴산(acrylic acid, AAc)을 그라프트 한 후 납 이온에 대한 흡착성능을 평가하였다. 다양한 조건에서 그라프트를 실시하여 조사량 100 kGy, 단량체 농도 60%에서 약 50%의 그라프트율을 갖는 아크릴산이 그라프트 된 폴리프로필렌(PP-g-AAc) 부직포를 제조하였다. 제조된 PP-g-AAc 부직포의 물리/화학적 특성을 SEM, ATRIR, 열분석, 인장강도 등의 분석을 통해 평가하였다. SEM으로 확인한 PP와 PP-g-AAc 부직포의 형태에는 큰 변화가 없었으며, ATR-FTIR 결과로부터 PP 부직포에 AAc가 도입되었다고 판단하였다. PP-g-AAc 부직포는 PP 부직포와 비교하여 인장강도는 증가하고 인장변형률은 감소하였다. 하지만 그 변화의 값이 크지 않아 물리적 특성에 큰 영향력은 없을 것이라 판단된다. 다양한 이온들에 대한 PP-g-AAc 부직포의 흡착특성을 평가한 결과 납에 대해 선택적 흡착 거동을 보였다. 결론적으로, 본 연구에서 제조된 PP-g-AAc는 납 이온 흡착을 위한 흡착제로서 응용이 기대된다.

Keywords

References

  1. Hassan, M.I., Taimur, S., and Yasin, T., "Upcucling of Polypropylene Waste by Surface Modification using Radiation-induced Grafting," Applied Surface Science, Vol. 422, 2017, pp. 720-730. https://doi.org/10.1016/j.apsusc.2017.06.086
  2. Moja, T.N., Bunekar, N., Mojaki, S., Mishra, S.B., Tsai, T.Y., Hwang, S.S., and Mishra, A.K., "Polypropylene-Polypropylene-Grafted-Maleic Anhydride-Montmorillonite Clay Nanocomposites for Pb(II) Removal," Journal of Inorganic and Organometallic Polymers and Materials, Vol. 28, 2018, pp. 2799-2811. https://doi.org/10.1007/s10904-018-0936-2
  3. Cheon, J.Y., and Park, W.H., "Green Synthesis of Silver Nanoparticles Stabilized with Mussel-Inspired Protein and Colorimetric Sensing of Lead(II) and Copper(II) Ions," International Journal of Molecular Sciences, Vol. 17, 2016, pp. 1-10. https://doi.org/10.3390/ijms17010001
  4. Kumar, V.V., and Anthony, S.P., "Silver Nanoparticles Based Selective Colorimetric Sensor for $Cd^{2+}$, $Hg^{2+}$ and $Pb^{2+}$ Ions: Tuning Sensitivity and Selectivity using Co-stabilizing Agents," Sensors and Actuators B: Chemical, Vol. 191, 2014, pp. 31-36. https://doi.org/10.1016/j.snb.2013.09.089
  5. EPA, United State Environmetal Protection Agency. http://www.epa.gov/ttnatwol/hlthef/lead(II), 2010.
  6. Pourjavadi, A., Tehrani, Z.M., Salimi, H., Babazadeh, A., and Abedini, N., "Hydrogel Nanocomposite Based on Chitosan-g-Acrylic Acid and Modified Nanosilica with High Adsorption capacity for Heavy Metal Ion Removal," Iran Polymer Journal, Vol. 24, 2015, pp. 725-734. https://doi.org/10.1007/s13726-015-0360-1
  7. Zhou, G., Luo, J., Liu, C., Chu, L., and Crittenden, J., "Efficient Heavy Metal Removal from Industrial Melting Effluent using Fixed-Bed Process Based on Porous Hydrogel Adsorbent," Water Research, Vol. 131, 2018, pp. 246-254. https://doi.org/10.1016/j.watres.2017.12.067
  8. Liu, Z., Hu, J., Sun, Q., Chen, L., Feng, X., and Zhao, Y., "Mussel-inspired Multifunctional Coating for Enhancing the UV-resistant Property of Polypropylene Fibers," Macromolecular Research, Vol. 25, No. 5, 2017, pp. 431-438. https://doi.org/10.1007/s13233-017-5062-4
  9. Madrid, J.F., Ueki, Y., and Seko, N., "Abaca/Polyester Nonwoven Fabric Functionalization for Metal Ion Adsorbent Synthesis via Electron Beam-Induced Emulsion Grafting," Radiation Physics and Chemistry, Vol. 90, 2013, pp. 104-110. https://doi.org/10.1016/j.radphyschem.2013.05.004
  10. Choi, S., and Nho, Y.C., "Radiation-Induced Graft Copolymerization of Binary Monomer Mixture Containing Acrylonitrile onto Polyethylene Film," Radiation Physics and Chemistry, Vol. 58, 2000, pp. 157-168. https://doi.org/10.1016/S0969-806X(99)00367-9
  11. Madrid, J.F., Lopez, G.E.P., and Abad, L.V., "Application of Fullfactorial Design in The Synthesis of Polypropylene-g-Poly(glycidyl methacrylate) Functional Material for Metal Ion Adsorption," Radiation Physics and Chemistry, Vol. 136, 2017, pp. 54-63. https://doi.org/10.1016/j.radphyschem.2017.01.047
  12. Lee, J.Y., Jeun, J., and Kang, P., "Effect of Storage Conditions on Graft of Polypropylene Non-woven Fabric Induced by Electron Beam," Journal of Radiation Industry, Vol. 9, 2015, pp. 57-62.
  13. Liu, M., Tao, Z. Wang, H. Zhao, F., and Sun, Q., "Preparation and Characterization of a Series of Porous Anion-Exchanger Chelating Fibers and Their Adsorption Behavior with Respect to Removal of Cadmium," RCS Advances, Vol. 6, 2016, pp. 115222-115237.
  14. Jeun, J., Hua, Z.J., Kang, P., and Nho, Y., "Electron-Beam-Radiation-Induced Grafting of Acrylonitrile onto Polypropylene Fibers: Influence of the Synthesis Condition," Journal of Applied Polymer Science, Vol. 115, 2010, pp.222-228. https://doi.org/10.1002/app.31062
  15. Lee, S.H., Jeong, Y.G., Yoon, Y.I., and Park, W.H., "Hydrolysis of Oxidized Polyacrylonitrile Nanofibrous Web and Selective Adsorption of Harmful Heavy Metal Ions," Polymer Degradation and Stability, Vol. 143, 2017, pp. 207-213. https://doi.org/10.1016/j.polymdegradstab.2017.07.017
  16. Mandal, D.K., Bhunia, H., Bajpai, P.K., Kushwaha, J.P., Chaudhari, C.V., Dubey, K.A., and Varshney, L, "Optimizatio of Acrylic Acid Grafting onto Polypropylene using Response Surface Methodology and Its Biodegradability," Radiation Physics and Chemistry, Vol. 132, 2017, pp. 71-81. https://doi.org/10.1016/j.radphyschem.2016.12.003
  17. Mandal, D.K., Bhunia, H., Bajpai, P.K., Chaudhari, C.V., Dubey, K.A., and Varshney, L, "Radiation-induced Grafting of Acrylic Acid onto Polypropylene Film and Its Biodegradability," Radiation Physics and Chemistry, Vol. 123, 2016, pp. 37-45. https://doi.org/10.1016/j.radphyschem.2016.02.011
  18. Guo, M., Chen, H., Luo, Z., Lian, Z., and Wei W., "Selective Removal of Pb(II) Ions from Aqueous Solutions by Acrylic Acid/Acrylamide Comonomer Grafted Polypropylene Fibers," Fibers and Polymers, Vol. 18, No. 8, 2017, pp. 1459-1467. https://doi.org/10.1007/s12221-017-7374-6
  19. Na, C.K., Park, H.J., and Chung, I.H., "Heavy Metal Adsorption Property of Acryl Acid Grafting Polypropylene Non-woven Fabric Synthesized by Photo-Induced Polymerization," Journal of the Korea Society for Environmental Technology, Vol. 3, No. 1, 2002, pp. 53-62.
  20. Naseem, K., Farooqi, Z.H., Rehman, M.Z.U., Rehman, M.A.U., and Ghufran, M., "Microgels as Efficient Adsorbents for the Removal of Pollutants from Aqueous Medium," Review in Chemical Engineering, Vol. 35, 2019, pp. 285-309. https://doi.org/10.1515/revce-2017-0042
  21. Zhou, T., Xia, F., Deng, Y., and Zhao, Y., "Removal of Pb(II) from Aqueous Solution using Waste Textiles/Poly(acrylic acid) Composite Synthesized by Radical Polymerization Technique," Journal of Environmental Sciences, Vol. 67, 2018, pp. 368-377. https://doi.org/10.1016/j.jes.2017.04.010