DOI QR코드

DOI QR Code

A Review of Flame Retarding Polyacrylonitrile (PAN) Fibers and Composites

난연성 폴리아크릴로니트릴 고분자 섬유 및 복합소재 연구 동향

  • Kim, Jongho (Carbon Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology) ;
  • Ku, Bon-Cheol (Carbon Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology)
  • Received : 2019.08.16
  • Accepted : 2019.12.23
  • Published : 2019.12.31

Abstract

Development of flame retarding polymer based materials has been studied actively due to the increase in use of polymers. The post treatment of manufactured fibers or the introduction of flame retardant into fibers is representative method for the way to improve the flame retardancy. Among the polymers, polyacrylonitrile (PAN), which is a precursor of carbon fiber, has been widely used for clothes. Due to low flame retardancy of PAN fiber (LOI value: 17~18%), the improvement of flame retardancy of PAN fiber is needed. In this review paper, we report preparation methods for the fabrication of post-treated (oxidization or chemical reaction) flame-retarding PAN fibers and composites composed of PAN and organic/inorganic materials (SiO2, 2D materials or CNT).

고분자 재료의 사용이 늘어남에 따라 난연성 고분자 재료에 대한 연구가 더욱 활발히 진행되고 있다. 고분자 재료의 난연성 향상을 위한 방법으로 제조된 섬유의 후처리 또는 섬유내 난연제의 도입에 관한 연구가 진행되고 있다. 많은 고분자들 중 탄소섬유 전구체인 폴리아크릴로니트릴(PAN)은 의류용으로도 많이 사용되고 있어서 낮은 난연성을 지닌 PAN으로 이루어진 소재의 난연성 향상이 절실히 요구되고 있다. 본 총설 논문에서는 PAN 섬유의 후처리(안정화 또는 화학반응)을 통한 난연성 PAN 섬유와, 유/무기 소재(실리카, 2차원 소재, 탄소나노튜브)과 함께 혼합하여 섬유로 제조하는 난연성 PAN 복합소재의 제조에 대한 연구를 소개하고자 한다.

Keywords

References

  1. Lu, S.Y., and Hamerton, I., "Recent Developments in the Chemistry of Halogen-Free Flame Retardant Polymers", Progress in Polymer Science, Vol. 27, No. 8, 2002, pp. 1661-1712. https://doi.org/10.1016/S0079-6700(02)00018-7
  2. Willard, J.J., and Wondra, R.E., "Quantitative Evaluation of Flame-Retardant Cotton Finishes by the Limiting-Oxygen Index (LOI) Technique," Textile Research Journal, Vol. 40, No. 3, 1970, pp. 203-210. https://doi.org/10.1177/004051757004000301
  3. Yu, Z.‐Z., Ke, Y.‐C., Ou, Y.‐C., and Hu, G.‐H., "Impact Fracture Morphology of Nylon 6 Toughened with a Maleated Polyethylene-Octene Elastomer," Journal of Applied Polymer Science, Vol. 76, No. 6, 2000, pp. 1285-1295. https://doi.org/10.1002/(SICI)1097-4628(20000523)76:8<1285::AID-APP9>3.0.CO;2-U
  4. FAvila, A., and Duarte, M.V., "A Mechanical Analysis on Recycled PET/HDPE Composites," Polymer Degradation and Stability, Vol. 80, No. 2, 2003, pp. 373-382. https://doi.org/10.1016/S0141-3910(03)00025-9
  5. Iwata, T., "Biodegradable and Bio-Based Polymers: Future Prospects of Eco-Friendly Plastics," Angewandte Chemie International Edition, Vol. 54, No, 11, 2015, pp. 3210-3215. https://doi.org/10.1002/anie.201410770
  6. Leu, T.-S., and Wang, C.-S., "Synergistic Effect of a Phosphorus-Nitrogen Flame Retardant on Engineering Plastics," Journal of Applied Polymer Science, Vol. 92, No. 1, 2004, pp. 410-417. https://doi.org/10.1002/app.13689
  7. Xu, S., Zhang, L., Lin, Y., Li, R., and Zhang, F., "Layered Double Hydroxides used as Flame Retardant for Engineering Plastic Acrylonitrile-Butadiene-Styrene (ABS)," Journal of Physics and Chemistry of Solids, Vol. 73, No. 12, 2012, pp. 1514-1517. https://doi.org/10.1016/j.jpcs.2012.04.011
  8. Levchik, S.V., Bright, D.A., Alessio, G.R., and Dashevsky, S., "New Halogen-Free Fire Retardant for Engineering Plastic Applications", Journal of Vinyl and Additive Technology, Vol. 7, No. 2, 2001, pp. 98-103. https://doi.org/10.1002/vnl.10274
  9. Hu, Y., Wang, S., Ling, Z., Zhuang, Y., Chen, Z., and Fan, W., "Preparation and Combustion Properties of Flame Retardant Nylon 6/Montmorillonite Nanocomposite," Macromolecular Materials and Engineering, Vol. 288, No. 3, 2003, pp. 272-276. https://doi.org/10.1002/mame.200390017
  10. Blum, A., "The Fire Retardant Dilemma," Science, Vol. 318, No. 5848, 2007, pp. 194-195. https://doi.org/10.1126/science.318.5848.194b
  11. Kennedy, D., "Toxic Dilemmas," Science, Vol. 318, No. 5854, 2007, p. 1217. https://doi.org/10.1126/science.1151604
  12. Ravichandran, S., Nagarajan, S., Ku, B.-C., Coughlin, B., Emrick, T., Kumar, J., and Nagarajan, R., "Halogen-Free Ultra-High Flame Retardant Polymers through Enzyme Catalysis," Green Chemistry, Vol. 14, No. 3, 2017, pp. 819-824. https://doi.org/10.1039/c2gc16192c
  13. Ranganthan, T., Ku, B.-C., Zilberman, J., Beaulieu, M., Farris, R.J., Coughlin, E.B., and Emrick, T., "Poly(Arylate‐Phosphonate) Copolymers with Deoxybenzoin in the Backbone: Synthesis, Characterization, and Thermal Properties," Journal of Polymer Science Part A: Polymer Chemistry, Vol. 45, No. 20, 20017, pp. 4573-4580. https://doi.org/10.1002/pola.22188
  14. Moon, S.C., Ku, B.-C., Emrick, T., Coughlin, E.B., and Farris, R.J., "Flame Resistant Electrospun Polymer Nanofibers from Deoxybenzoin‐based Polymers," Journal of Applied Polymer Science, Vol. 111, No. 1, 2009, pp. 301-307. https://doi.org/10.1002/app.29067
  15. Yang, H., Yu, B., Song, P., Maluk, C., and Wang, H., "Surface-Coating Engineering for Flame Retardant Flexible Polyurethane Foams a Critical Review," Composites Part B, Vol. 176, 2019, pp. 107185. https://doi.org/10.1016/j.compositesb.2019.107185
  16. Lee, S., Kim, J., Ku, B.-C., Kim, J., and Joh, H.-I., "Structural Evolution of Polyacrylonitrile Fibers in Stabilization and Carbonization," Advances in Chemical Engineering and Science, Vol. 2, No. 2, 2012, pp. 275-282. https://doi.org/10.4236/aces.2012.22032
  17. Rahaman, M.S.A., Ismail, A.F., and Mustafa, A., "A Review of Heat Treatment on Polyacrylonitrile Fiber," Polymer Degradation and Stability, Vol. 92, No. 8, 2007, pp. 1421-1432. https://doi.org/10.1016/j.polymdegradstab.2007.03.023
  18. Fu, Z., Liu, B., Sun, L., and Zhang, H., "Study on the Thermal Oxidative Stabilization Reactions and the Formed Structures in Polyacrylonitrile during Thermal Treatment," Polymer Degradation and Stability, Vol. 140, 2017, pp. 104-113. https://doi.org/10.1016/j.polymdegradstab.2017.04.018
  19. Arbab, S., and Zeinolebadi, A., "A Procedure for Precise Determination of Thermal Stabilization Reactions in Carbon Fiber Precursors," Polymer Degradation and Stability, Vol. 98, 2013, pp. 2537-2545. https://doi.org/10.1016/j.polymdegradstab.2013.09.014
  20. Lee, H.J., Won, J.S., Lim, S.C., Lee, T.S., Yoon, J.Y., and Lee, S.G., "Preparation and Characterization of PAN-based Carbon Fiber with Carbonization Temperature," Textile Science and Engineering, Vol. 53, No. 2, 2016, pp. 103-108. https://doi.org/10.12772/TSE.2016.53.103
  21. Xue, Y., Liu, J., and Liang, J., "Correlative Study of Critical Reactions in Polyacrylonitrile Based Carbon Fiber Precursors during Thermal-Oxidative Stabilization," Polymer Degradation and Stability, Vol. 98, 2013, pp. 219-229. https://doi.org/10.1016/j.polymdegradstab.2012.10.018
  22. Hall, M.E., Horrocks, A.R., and Zhang, J., "The Flammability of Polyacryionitrile and Its Copolymers," Polymer Degradation and Stability, Vol. 44, No. 3, 1994, pp. 379-386. https://doi.org/10.1016/0141-3910(94)90097-3
  23. Arbab, S., and Zeinolebadi, A., "Quantitative Analysis of the Effects of Comonomers and Heating Conditions on the Stabilization Reactions of Polyacrylonitrile Fibers as Carbon Fiber Precursors," Polymer Degradation and Stability, Vol. 139, 2017, pp. 107-116. https://doi.org/10.1016/j.polymdegradstab.2017.04.003
  24. Park, O.K., Lee, S., Joh, H.I., Kim, J.K., Kang, P.H., Lee, J.H., and Ku, B.-C., "Effect of Functional Groups of Carbon Nanotubes on the Cyclization Mechanism of Polyacrylonitrile (PAN)," Polymer, Vol. 53, No. 11, 2012, pp. 2169-2174.
  25. Lee, J.H., Jin, J.U., Park, S., Choi, D., You, N.H., Chung, Y., Ku, B.-C., and Yeo, H., "Melt Processable Polyacrylonitrile Copolymer Precursors for Carbon Fibers: Rheological, Thermal, and Mechanical Properties," Journal of Industrial and Engineering Chemistry, Vo. 71, 2019, pp. 112-118. https://doi.org/10.1016/j.jiec.2018.11.012
  26. Fu, Z., Gui, Y., Cao, C., Liu, B., Zhou, C., and Zhang, H., "Structure Evolution and Mechanism of Polyacrylonitrile and Related Copolymers during the Stabilization," Journal of Materials Science, Vol. 49, No. 7, 2014, pp. 2864-2874. https://doi.org/10.1007/s10853-013-7992-3
  27. Ju, A., and Xu, H., "Mechanism and Kinetics of Stabilization Reactions of Poly(acrylonitrile-co-$\beta$-methylhydrogen itaconate)," Journal of Materials Research, Vol. 27, No. 20, 2012, pp. 2668-2676. https://doi.org/10.1557/jmr.2012.219
  28. Nguyen-Thai, N.U., and Hong. S.C., "Structural Evolution of Poly(acrylonitrile-co-itaconic acid) during Thermal Oxidative Stabilization for Carbon Materials," Macromolecules, Vol. 46, No. 15, 2013, pp. 5882-5889. https://doi.org/10.1021/ma401003g
  29. Nguyen-Thai, N.U., and Hong. S.C., "Controlled Architectures of Poly(acrylonitrile-co-itaconic acid) for Efficient Structural Transformation into Carbon Materials," Carbon, Vol. 69, 2014, pp. 571-581. https://doi.org/10.1016/j.carbon.2013.12.068
  30. Ghorpade, R.V., Cho, D.W., and Hong, S.C., "Effect of Controlled Tacticity of Polyacrylonitrile (co)Polymers on their Thermal Oxidative Stabilization Behaviors and the Properties of Resulting Carbon Films," Carbon, Vol. 121, 2017, pp. 502-511. https://doi.org/10.1016/j.carbon.2017.06.015
  31. Hobbs, C.E., "Recent Advances in Bio-Based Flame Retardant Additives for Synthetic Polymeric Materials," Polymers, Vol. 11, No. 2, 2019, pp. 224. https://doi.org/10.3390/polym11020224
  32. Cho, J.H., Vasagar, V., Shanmuganathan, K., Jones, A.R., Nazarenko, S., and Ellison, C.J., "Bioinspired Catecholic Flame Retardant Nanocoating for Flexible Polyurethane Foams," Chemistry of Materials, Vol. 27, No. 19, 2015, pp. 6784-6790. https://doi.org/10.1021/acs.chemmater.5b03013
  33. Kim, H., Kim, D.W., Vasagar, V., Ha, H., Nazarenko, S., and Ellison, C.J., "Polydopamine-Graphene Oxide Flame Retardant Nanocoatings Applied via an Aqueous Liquid Crystalline Scaffold," Advanced Functional Materials, Vol. 28, No. 39, 2018, pp. 1803172. https://doi.org/10.1002/adfm.201803172
  34. Nam, K.-H., Jin, J.-U., Lee, J.H., Kim, J., Chung, Y.S., Yeo, H., You, N.-H., and Ku, B.-C., "Highly Efficient Thermal Oxidation and Cross-Linking Reaction of Catechol Functionalized Polyacrylonitrile Copolymer Composites for Halogen-Free Flame Retardant," Composites Part B, Vol. 184, 2020, pp.107687. https://doi.org/10.1016/j.compositesb.2019.107687
  35. Sayed, U., Jain, H., and Ragupathy, S., "Oxidised Polyacrylonitrile Fibre as a Flame Retardant Material," International Journal of Advanced Science and Engineering, Vol. 2, No. 3, 2016, pp. 155-158.
  36. https://www.sglgroup.com/cms/international/products/product-groups/cf/oxidized-fiber/index.html.
  37. http://zoltek.com/products/pyron/.
  38. http://www.tohotenax.com/tenax/en/products/pyromex.php.
  39. Ren, Y., Jiang, L., Tian, T., Liu, X., and Hana, Z., "Durable Flame Retardant Polyacrylonitrile Fabric via UV-Induced Grafting Polymerization and Surface Chemical Modification," RSC Advances, Vol. 8, No. 72, 2018, pp. 41389-41396. https://doi.org/10.1039/C8RA09005J
  40. Ren, Y., Huo, T., and Qin, Y., "Preparation of Phosphorus‐containing and Nitrogen‐containing durable Flame Retardant Polyacrylonitrile Fabric via Surface Chemical Modification," Fire and Materials, Vol. 42, No. 8, 2018, pp. 925-932. https://doi.org/10.1002/fam.2647
  41. Zhang, Y., Ren, Y., Liu, X., Huo, T., and Qin, Y., "Preparation of Durable Flame Retardant PAN Fabrics based on Amidoximation and Phosphorylation," Applied Surface Science, Vol. 428, 2018, pp. 395-403. https://doi.org/10.1016/j.apsusc.2017.09.155
  42. Ren, Y., Gu, Y., Zeng, Q., and Zhang, Y., "UV-induced Surface Grafting Polymerization for Preparing Phosphoruscontaining Flame Retardant Polyacrylonitrile Fabric," European Polymer Journal, Vol. 94, 2017, pp. 1-10. https://doi.org/10.1016/j.eurpolymj.2017.06.037
  43. Ren, Y., Tian, T., Jiang, L., Liu, X., and Han, Z., "Polyvinyl Alcohol reinforced Flame-Retardant Polyacrylonitrile Composite Fiber prepared by Boric Acid Cross-Linking and Phosphorylation," Materials, Vol. 11, No. 12, 2018, p. 2391. https://doi.org/10.3390/ma11122391
  44. Wu, Q., Zhang, Q., Zhao, L., Li, S. N., Wu, L. B., Jiang, J.X., and Tang, L.C., "A Novel and Facile Strategy for Highly Flame Retardant Polymer Foam Composite Materials: Transforming Silicone Resin Coating into Silica Self-Extinguishing Layer," Journal of Hazardous Materials, Vol. 336, 2017, pp. 222-231. https://doi.org/10.1016/j.jhazmat.2017.04.062
  45. Kim, Y.G., Kim, H.S., Jo, S.M., Kim, S.Y., Yang, B.J., Cho, J., Lee, S.H., and Cha, J.E., "Thermally Insulating, Fire-Retardant, Smokeless and Flexible Polyvinylidene Fluoride Nanofibers filled with Silica Aerogels," Chemical Engineering Journal, Vol. 351, 2018, pp. 473-481. https://doi.org/10.1016/j.cej.2018.06.102
  46. Xu, W., Wang, G., Liu, Y., Chen, R., and Li, W., "Zeolitic Imidazolate Framework-8 Was Coated with Silica and Investigated as a Flame Retardant to Improve the Flame Retardancy and Smoke Suppression of Epoxy Resin," RSC Advances, Vol. 8, No. 5, 2018, pp. 2575-2585. https://doi.org/10.1039/C7RA12816A
  47. Ren, Y., Zhang, Y., Gu, Y., and Zeng Q., "Flame Retardant Polyacrylonitrile Fabrics prepared by Organic-Inorganic Hybrid Silica Coating via Sol-gel Technique," Progress in Organic Coatings, Vol. 112, 2017, pp. 225-233. https://doi.org/10.1016/j.porgcoat.2017.07.022
  48. Jiang, S.-D., Tang, G., Bai, Z.-M., Wang, Y.-Y., Hu, Y., and Song, L., "Surface Functionalization of $MoS_2$ with POSS for Enhancing Thermal, Flame-Retardant and Mechanical Properties in PVA Composites," RSC Advances, Vol. 4, No. 7, 2014, pp. 3253-3262. https://doi.org/10.1039/C3RA45911J
  49. Chen, H.-B., and Schiraldi, D.A., "Flammability of Polymer/Clay Aerogel Composites: An Overview," Polymer Reviews, Vol. 59, No. 1, 2019, pp. 1-24. https://doi.org/10.1080/15583724.2018.1450756
  50. Kiliaris, P., and Papaspyrides, C.D., "Polymer/Layered Silicate (Clay) Nanocomposites: An Overview of Flame Retardancy," Progress in Polymer Science, Vol. 35, No. 7, 2010, pp. 902-958. https://doi.org/10.1016/j.progpolymsci.2010.03.001
  51. Yang, Z.-W., Liang, X.-X., Xu, X.-Q., Lei, C., He, X.-I. Song, T., Huo, W.-Y., Ma, H.-C., and Lei, Z.-Q., "PGS@B-N: An Efficient Flame Retardant to Improve Simultaneously the Interfacial Interaction and the Flame Retardancy of EVA," RSC Advances, Vol. 6, No. 70, 2016, pp. 65921-65929. https://doi.org/10.1039/C6RA11804F
  52. Snag, B., Li, Z.-W., Yu, L.-G., and Zhang, Z.-J., "Graphene-based Flame Retardants: A Review," Journal of Materials Science, Vol. 51, No. 18, 2016, pp. 8271-8295. https://doi.org/10.1007/s10853-016-0124-0
  53. Lee, S., Kim, Y.J., Kim, D.H., Ku, B.-C., and Joh, H.I., "Synthesis and Properties of Thermally Reduced Graphene Oxide/Polyacrylonitrile Composites," Journal of Physics and Chemistry of Solids, Vol. 73, No. 6, 2012, pp. 741-743. https://doi.org/10.1016/j.jpcs.2012.01.015
  54. Yuan, B., Fan, A., Yang, M., Chen, X., Hu, Y., Bao, C., Jiang, S., Niu, Y., Song, H., and Dai, H., "The Effects of Graphene on The Flammability and Fire Behavior of Intumescent Flame Retardant Polypropylene Composites at Different Flame Scenarios," Polymer Degradation and Stability, Vol. 143, 2017, pp. 42-56. https://doi.org/10.1016/j.polymdegradstab.2017.06.015
  55. Peng, H., Wang, D., Li, M., Zhang, L., Liu, M., and Fu, S., "NP-Zn-containing 2D Supermolecular Networks grown on $MoS_2$ Nanosheets for Mechanical and Flame-Retardant Reinforcements of Polyacrylonitrile Fiber," Chemical Engineering Journal, Vol. 372, 2019, pp. 873-885. https://doi.org/10.1016/j.cej.2019.04.209
  56. Moon, S., and Emrick, T., "High Flame Resistant and Strong Electrospun Polyacrylonitrile-Carbon Nanotubes-Ochre Nanofibers," Polymer, Vol. 54, No. 7, 2013, pp. 1813-1819. https://doi.org/10.1016/j.polymer.2013.01.053