DOI QR코드

DOI QR Code

Prediction of Long-term Viscoelastic Performance of PET Film Using RH-DMA

RH-DMA를 적용한 PET 필름의 장기 점탄성 성능 예측

  • Choi, Sun Ho (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • Yoon, Sung Ho (Department of Mechanical Engineering, Kumoh National Institute of Technology)
  • Received : 2019.10.23
  • Accepted : 2019.12.10
  • Published : 2019.12.31

Abstract

A single frequency strain mode test, a stress relaxation mode test, and a creep test using RH-DMA were performed to investigate the effects of relative humidity and temperature on the viscous properties of PET film. The relative humidity was 10%, 30%, 50%, 70%, and 90%. The temperature was considered to be 30~95℃ for single frequency strain mode tests, 30℃ and 70℃ for stress relaxation mode test, and 5~95℃ for creep test. According to the results, higher relative humidity results in lower storage modulus and loss modulus, but the maximum value of the loss modulus is not significantly affected by changes in relative humidity and is almost constant. Relaxation modulus decreases rapidly at the beginning and becomes constant, and as the temperature increases, it is susceptible to changes in relative humidity. Strain recovery also increases rapidly at the beginning and is susceptible to changes in relative humidity as the temperature increases. In addition, as the temperature increases, the degree of increase in creep compliance increases, and as the temperature rises above the glass transfer temperature, the degree of increase becomes very large. The master curve determined by the time-temperature superposition provides the information to predict the long-term performance under operating conditions such as relative humidity and temperature.

상대습도와 온도가 PET 필름의 점탄성 특성에 미치는 영향을 조사하기 위해 RH-DMA를 이용하여 single frequency strain mode 시험, stress relaxation mode 시험, creep 시험을 수행하였다. 상대습도는 10%, 30%, 50%, 70%, 90%를 적용하고 온도는 single frequency strain mode 시험의 경우 30~95℃, stress relaxation mode 시험의 경우 30℃ 와 70℃, creep 시험의 경우 5~95℃를 고려하였다. 연구결과에 따르면 상대습도가 높아지면 저장탄성계수와 손실탄성계수는 낮아지며 손실탄성계수의 최대값은 상대습도의 변화에 큰 영향을 받지 않고 거의 일정해진다. 이완탄성계수는 초기에 급격히 감소하다가 일정한 값을 가지며 높은 온도에서는 상대습도의 변화에 민감해진다. 변형률 회복는 초기에 급격히 증가하며 온도가 높아지면 이완 탄성계수와 마찬가지로 상대습도에 민감하게 변한다. 크리프 컴플라이언스의 증가 정도는 온도가 높아지면 커지며 유리전이온도보다 온도가 높아지면 증가 정도는 더욱 커진다. 시간-온도 중첩법을 통해 구해지는 마스터 선도를 이용하면 상대습도와 온도 등의 운용 조건에서의 장기 성능을 예측할 수 있는 정보를 얻을 수 있다.

Keywords

References

  1. Anh, M.H., Cho, E.S., and Kwon, S.J., "Characteristics of ITO-resistive Touch Film Deposited on a PET Substrate by In-line DC Magnetron Sputtering," Vacuum, Vol. 101, 2014, pp. 221-227. https://doi.org/10.1016/j.vacuum.2013.08.018
  2. Park, S.H., and Kim, S.H., "Poly(ethylene terephthalate) Recycling for High Value Added Textiles," Fashion and Textiles, Vol. 1, No. 1, 2014.
  3. Wiria, F.E., Tham, C.L., Subramanian, A.S., Tey, J.N., Qi, X., and S.B., "Improving Surface Quality of Polyethylene Terephthalate Film for Large Area Flexible Electronic Applications," Journal of Solid State Electrochemistry, Vol. 20, No. 7, 2016, pp. 1895-1902. https://doi.org/10.1007/s10008-015-3021-6
  4. Geyter, N.D., Morent, R., and Leys, C., "Influence of Ambient Conditions on the Ageing Behavior of Plasma-treated PET Surfaces," Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, Vol. 266, No. 12-13, 2008, pp. 3086-3090. https://doi.org/10.1016/j.nimb.2008.03.167
  5. Karnav, K., "Degradation of Polyester Film Exposed to Accelerated Indoor Damp Heat Aging," Proceeding of 2011 37th IEEE Photovoltaic Specialists Conference, 2011, pp. 96-100.
  6. Lee, S.I., "A Study on Dielectric Properties of Polycarbonate Film Due to Variation of Degradation Time," Journal of the Korean Institute of Electrical and Electronic Material Engineers, Vol. 31, No. 7, 2018, pp. 469-474. https://doi.org/10.4313/JKEM.2018.31.7.469
  7. Pirzadeh, E., Zadhoush, A., and Haghighat, M., "Hydrolytic and Thermal Degradation of PET Fibers and PET Granule: The Effects of Crystallization, Temperature, and Humidity," Journal of Applied Polymer Science, Vol. 106, 2007, pp. 1544-1549. https://doi.org/10.1002/app.26788
  8. Bonnaillie, L.M., and Tomasula, P.M., "Application of Humidity-controlled Dynamic Mechanical Analysis (DMA-RH) to Moisture-sensitive Edible Casein Films for Use in Food Packaging," Polymers, Vol. 7, No. 1, 2015, pp. 91-114. https://doi.org/10.3390/polym7010091
  9. Goertzen, W.K., and Kessler, M.R., "Dynamic Mechanical Analysis of Carbon/epoxy Composites for Structural Pipeline Repair," Journal of Composites Part B: Engineering, Vol. 38, No. 1, 2007, pp. 1-9. https://doi.org/10.1016/j.compositesb.2006.06.002
  10. Sheng, X., Akinc, M., and Kessler, M.R., "Creep Behavior of Bisphenol E Cyanate Ester/alumina Nanocomposites," Materials Science and Engineering A, Vol. 527, No. 21-22, 2010, pp. 5892-5899. https://doi.org/10.1016/j.msea.2010.05.060
  11. Ghosh, S.K., Rajesh, P., Srikavya, B., Rathore, D.K., Prusty, R.K., and Ray, B.C., "Creep Behavior Prediction of Multi-layer Graphene Embedded Glass Fiber/epoxy Composites Using Time Temperature Superposition Principle," Composites Part A, Vol. 107, 2018, pp. 507-518. https://doi.org/10.1016/j.compositesa.2018.01.030