DOI QR코드

DOI QR Code

Ductile Fracture of a Marine Structural Steel based on HC-DSSE Combined Fracture Strain Formulation

HC-DSSE 조합 파단 변형률 정식화에 기반한 선박해양 구조물용 강재의 연성 파단 예측

  • Park, Sung-Ju (Department of Naval Architecture and Ocean Engineering, Inha University) ;
  • Lee, Kangsu (Korea Research Institute of Ships and Ocean Engineering) ;
  • Cerik, Burak Can (Department of Naval Architecture and Ocean Engineering, Inha University) ;
  • Kim, Younghyn (Department of Naval Architecture, Ocean & IT Engineering., Kyungnam University) ;
  • Choung, Joonmo (Department of Naval Architecture and Ocean Engineering, Inha University)
  • Received : 2018.08.08
  • Accepted : 2018.11.16
  • Published : 2019.02.20

Abstract

In this paper, the ductile fracture criteria for a marine structural steel (EH36) are presented and validated. The theoretical background of the recently developed Hosford-Coulomb (HC) fracture strain model and the DSSE fracture strain model which was developed to apply to the shell elements is described. In order to accurately estimate the flow stress in the large strain range up to the fracture, the material constants for the combined Swift-Voce constitutive equation were derived by the numerical analyses of the smooth and notched specimens made from the EH36 steel. As a result of applying the Swift-Voce flow stress to the other notched specimen model, a very accurate load - displacement curve could be derived. The material constants of the HC fracture strain and DSSE fracture strain models were independently calibrated based on the numerical analyses for the smooth and notch specimen tests. The user subroutine (VUMAT of Abaqus) was developed to verify the accuracy of the combined HC-DSSE fracture strain model. An asymmetric notch specimen was used as verification model. It was confirmed that the fracture of the asymmetric specimen can be accurately predicted when a very small solid elements are used together with the HC fracture strain model. On the other hand, the combined HC-DSSE fracture strain model can predict accurately the fracture of shell element model while the shell element size effect becomes less sensitive.

Keywords

References

  1. Algarni, M., Choi, Y. & Bai,Y., 2017. A unified material model for multiaxial ductile fracture and extremely low cycle fatigue of Inconel 718. International Journal of fatigue, 96, pp.162-177. https://doi.org/10.1016/j.ijfatigue.2016.11.033
  2. Banabic, D., 2010. A review on recent developments of Marciniak-Kuczynski model. Computer Methods in Materials Science, 10(4), pp.225-237.
  3. Bai, Y. & Wierzbicki, T., 2008. A new model of metal plasticity and fracture with pressure and lode dependence. International Journal of Plasticity, 24(6), pp.1071-1096. https://doi.org/10.1016/j.ijplas.2007.09.004
  4. Bai, Y. & Wierzbicki, T., 2010. Application of extended Mohr-Coulomb criterion to ductile fracture. International Journal of Fracture, 161(1), pp.1-20. https://doi.org/10.1007/s10704-009-9422-8
  5. Bao, Y. & Wierzbicki, T., 2004. On fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences, 46(1), pp.81-98. https://doi.org/10.1016/j.ijmecsci.2004.02.006
  6. Benzerga, A.A., 2002. Micromechanics of coalescence in ductile fracture. Journal of the Mechanics and Physics of Solid, 50(6), pp.1331-1362. https://doi.org/10.1016/S0022-5096(01)00125-9
  7. Bonora, N., 1997. A nonlinear CDM model for ductile failure. Engineering Fracture Mechanics, 58(1-2), pp.11-28. https://doi.org/10.1016/S0013-7944(97)00074-X
  8. Bonora, N., Gentile, D., Pirondi, A. & Newaz, G. 2005, Ductile damage evolution under triaxial state of stress: theory and experiments. International Journal of Plasticity, 21, pp.981-1007. https://doi.org/10.1016/j.ijplas.2004.06.003
  9. Choung, J., 2009. Comparative studies of fracture models for marine structural steels. Ocean Engineering, 36(15), pp.1164-1174. https://doi.org/10.1016/j.oceaneng.2009.08.003
  10. Choung, J., Shim, C.S. & Kim, K.S., 2011. Plasticity and fracture behaviors of marine structural steel, part III: Experimental study on failure strain. Journal of Ocean Engineering and Technology, 25(3), pp.53-66. https://doi.org/10.5574/KSOE.2011.25.3.053
  11. Choung, J., Shim. C.S. & Song, H.C., 2012. Estimation of failure strain of EH36 high strength marine structural steel using average stress triaxiality. Marine Structures, 29(1), pp.1-21. https://doi.org/10.1016/j.marstruc.2012.08.001
  12. Choung, J. & Nam, W., 2013. Formulation of failure strain according to average stress triaxiality of low temperature high strength steel (EH36). Journal of Ocean Engineering and Technology, 27(2), 19-26. https://doi.org/10.5574/KSOE.2013.27.2.019
  13. Choung, J., Nam, W. & Kim, Y., 2014a. Fracture simulation of low-temperature high-strength steel (EH36) using usersubroutine of commercial finite element code. Journal of Ocean Engineering and Technology, 28(1), pp.34-46. https://doi.org/10.5574/KSOE.2014.28.1.034
  14. Choung, J., Nam, W., Lee, D. & Song, S.Y., 2014b. Failure strain formulation via average stress triaxiality of an high strength steel for arctic structures. Ocean Engineering, 91, pp.218-226. https://doi.org/10.1016/j.oceaneng.2014.09.019
  15. Choung, J., Park, S.J. & Kim, Y., 2015a. Development of three dimensional fracture strain surface in average stress triaxiaility and average normalized lode parameter domain for arctic high tensile steel: Part I theoretical background and experimental studies. Journal of Ocean Engineering and Technology. 29(6), pp.445-453. https://doi.org/10.5574/KSOE.2015.29.6.445
  16. Choung, J., Park, S.J. & Kim, Y., 2015b. Development of three-dimensional fracture strain surface in average stress triaxiaility and average normalized lode parameter domain for arctic high tensile steel: Part II formulation of fracture strain surface. Journal of Ocean Engineering and Technology. 29(6), pp.454-462. https://doi.org/10.5574/KSOE.2015.29.6.454
  17. Erice, B., Roth, C.C. & Mohr, D., 2017. Stress-state and strain-rate dependent ductile fracture of dual and complex phase steel. Mechanics of Materials, 16, pp.11-32.
  18. Gurson, A.L., 1977. Continuum theory of ductile rupture by void nucleation and growth: part I - yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology, 99(1), pp.2-15. https://doi.org/10.1115/1.3443401
  19. Hooputra, H., Gese, H., Dell, H. & Werner, H., 2004, A comprehensive failure model for crashworthiness simulation of aluminium extrusions. International Journal of Crashwerthiness, 9(5), pp.449-463. https://doi.org/10.1533/ijcr.2004.0289
  20. Johnson, G.R. & Cook, W., 1985. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(1), pp.31-48. https://doi.org/10.1016/0013-7944(85)90052-9
  21. Korgesaar, M., Remes, H. & Romanoff, J., 2014. Size dependent response of large shell elements under in-plane tensile loading, International Journal of Solids and Structures, 51, pp.3752-3761. https://doi.org/10.1016/j.ijsolstr.2014.07.012
  22. Korgesaar, M., Romanoff, J., Remes, H. & Palokangas, P. 2018. Experimental and numerical penetration response of laswer-welded stiffened panels. International Journal of Impact Engineering, 114, pp.78-92. https://doi.org/10.1016/j.ijimpeng.2017.12.014
  23. Lemaitre, J. 1985. A continuous damage mechanics model for ductile fracture. Journal of Engineering Materials and Technology, 107, pp.83-89. https://doi.org/10.1115/1.3225775
  24. Leblond, J. B., Perrin, G. & Devaux, J., 1995. An improved Gurson-type model for hardenable ductile metals. European Journal of Mechanics Series a Solids, 14(2), pp.499-527.
  25. McClintock, F.A., 1968. Acriterion for ductile fracture by the growth of holes. Journal of Applied Mechanics. 35(2), pp.363-371. https://doi.org/10.1115/1.3601204
  26. Mohr, D. & Marcadet, S., 2015. Micromechanically- motivated phenomenological hosford-coulomb model for predicting ductile fracture initiation at low stress triaxialites. International Journal of Solids and Structures. 67-68, pp.40-55. https://doi.org/10.1016/j.ijsolstr.2015.02.024
  27. Nahshon, K. & Hutchinson, J., 2008. Modication of the Gurson model for shear failure. European Journal of Mechanics-A/Solids, 27(1), pp.1-17. https://doi.org/10.1016/j.euromechsol.2007.08.002
  28. Nielsen, K. L. & Tvergaard, V., 2010. Ductile shear failure or plug failure of spot welds modelled by modied Gurson model. Engineering Fracture Mechanics, 77(7), pp.1031-1047. https://doi.org/10.1016/j.engfracmech.2010.02.031
  29. Park, S.J., Lee, K. & Choung, J., 2016. Punching fracture simulations of circular unstiffened steel plates using threedimensional fracture surface. Journal of Ocean Engineering and Technology, 30(6), pp.474-483. https://doi.org/10.5574/KSOE.2016.30.6.474
  30. Pack, K. & Mohr, D., 2017. Combined necking & fracture model to predict ductile failure with shell finite elements. Engineering Fracture Mechanics, 182, pp.32-51. https://doi.org/10.1016/j.engfracmech.2017.06.025
  31. Park, S.J., Lee, K., Choung, J. & Walters, C.L., 2018. Ductile fracture prediction of high tensile steel EH36 using new damage functions. Ships and Offshore Structures, 13, pp.68-78. https://doi.org/10.1080/17445302.2018.1426433
  32. Papasidero, J., Doquet, V. & Mohr, D., 2015. Ductile fracture of aluminum 2024-T351 under proportional and nonproportional multi-axial loading: Bao-Wierzbicki results revisited. International Journal of Solids and Structures, 69-70, pp.459-474. https://doi.org/10.1016/j.ijsolstr.2015.05.006
  33. Rice, J.R. & Tracey, D.M., 1969. On the ductile enlargement of voids in triaxial stress. Journal of the Mechanics and Physics of Solids. 17(3), pp.201-217. https://doi.org/10.1016/0022-5096(69)90033-7
  34. Simulia. 2018. Abaqus user manual, Simulia.
  35. Tvergaard, V. & Needleman, A., 1984. Analysis of the Cup-cone Fracture in a Round Tensile Bar. Acta Metallurgica, 32(1), pp.157-169. https://doi.org/10.1016/0001-6160(84)90213-X
  36. Walters, C.L., 2014, Framework for adjusting for both stress triaxiality and mesh size effect for failure of metals in shell structures. International Journal of Crashworthiness, 19(1), pp.1-12. https://doi.org/10.1080/13588265.2013.825366
  37. Woo, S.H., Lee, K. & Choung, J, 2017, Design of subsea manifold protective structure against dropped object impacts. Journal of Ocean Engineering and Technology, 31(3), pp.233-240. https://doi.org/10.5574/KSOE.2017.31.3.233
  38. Xue, L., 2007. Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading. International Journal of Solids and Structures, 44(16), pp.5163-5181. https://doi.org/10.1016/j.ijsolstr.2006.12.026