STRUCTURE OF 3-PRIME NEAR-RINGS SATISFYING SOME IDENTITIES

Abdelkarim Boua

Abstract. In this paper, we investigate commutativity of 3-prime near-rings \(N \) in which \((1, \alpha)\)-derivations satisfy certain algebraic identities. Some well-known results characterizing commutativity of 3-prime near-rings have been generalized. Furthermore, we give some examples show that the restriction imposed on the hypothesis is not superfluous.

1. Introduction

In the present paper, \(N \) will denote a left near-ring with center \(Z(N) \). A near-ring \(N \) is called zero-symmetric if \(0x = 0 \) for all \(x \in N \) (recall that left distributivity yields \(x0 = 0 \)). \(N \) is 3-prime, that is, for \(a, b \in N \), \(aNb = \{0\} \) implies \(a = 0 \) or \(b = 0 \). A non empty subset \(U \) of \(N \) is said to be a semigroup left (resp. right) ideal of \(N \) if \(NU \subseteq U \) (resp. \(UN \subseteq U \)) and if \(U \) is both a semigroup left ideal and a semigroup right ideal, it is called a semigroup ideal of \(N \). As usual for all \(x,y \) in \(N \), the symbol \([x,y]\) stands for Lie product (commutator) \(xy - yx \) and \(x \circ y \) stands for Jordan product (anticommutator) \(xy + yx \). We note that for a left near-ring, \(-(x+y) = -y - x \) and \(-xy = x(-y) \).

For terminologies concerning near-rings we refer to G. Pilz [9].

An additive mapping \(d : N \to N \) is said to be a derivation if \(d(xy) = xd(y) + d(x)y \) for all \(x,y \in N \), or equivalently, as noted in [11], that \(d(xy) = d(x)y + xd(y) \) for all \(x,y \in N \). An additive mapping \(d : N \to N \) is called a semiderivation if there exists a map \(g : N \to N \) such that \(d(xy) = d(x)g(y) + xd(y) = d(x)y + g(x)d(y) \) and \(d(g(x)) = g(d(x)) \) hold for all \(x,y \in N \). An additive mapping \(d : N \to N \) is called a two sided \(\alpha \)-derivation if there exists a map \(\alpha : N \to N \) such that \(d(xy) = d(x)y + \alpha(x)d(y) \) and \(d(xy) = d(x)\alpha(y) + xd(y) \) hold for all \(x,y \in N \). An additive mapping \(d : N \to N \) is called \((1, \alpha)\)-derivation if there exists a map \(\alpha : N \to N \) such that \(d(xy) = d(x)y + \alpha(x)d(y) \) holds for all \(x,y \in N \). An additive mapping \(d : N \to N \) is called \((\alpha, 1)\)-derivation if there exists a map \(\alpha : N \to N \) such that \(d(xy) = d(x)\alpha(y) + xd(y) \) holds for all \(x,y \in N \).

Received November 7, 2017; Revised March 25, 2018; Accepted April 11, 2018.
2010 Mathematics Subject Classification. Primary 16N60, 16W25, 16Y30.

Key words and phrases. 3-prime near-rings, commutativity, \((1, \alpha)\)-derivations, two sided \(\alpha \)-derivations.

©2019 Korean Mathematical Society
$x, y \in \mathcal{N}$. Obviously, a two sided α-derivation is both a $(1, \alpha)$-derivation as well as an $(\alpha, 1)$-derivation. Also, any derivation on \mathcal{N} is a $(1, \alpha)$-derivation, but the converse is not true in general (see [6]). The study of commutativity of 3-prime near-rings by using derivations was initiated by H. E. Bell and G. Mason in 1987 (see [5]). In [8] A. A. M. Kamal generalizes some results of Bell and Mason by studying the commutativity of 3-prime near-rings using σ-derivations instead of the usual derivations, where σ is an automorphism on the near-ring. M. Ashraf, A. Ali and Shakir Ali in [1] and N. Aydin and Ö. Gölbaşı in [7] generalize Kamal’s work by using a (s, t)-derivation instead of a s-derivation, where s and t are automorphisms. Recently many authors (see [2], [4], [5]) for reference where further references can be found) have studied commutativity of 3-prime near-rings satisfying certain identities involving derivations, semiderivations, two sided α-derivations. Now our aim in this paper is to study the commutativity behavior of 3-prime near-ring which admits $(1, \alpha)$-derivations satisfying certain properties. In fact, our results generalize, extend and complement several results obtained earlier in [2], [6], [10] on derivations, semiderivations and two sided α-derivations for 3-prime near-rings.

2. Some preliminaries

In this section, we give some well-known results and we add some new lemmas which will be used throughout the next sections of the paper.

Lemma 2.1 ([4, Theorem 2.9]). Let \mathcal{N} be a 3-prime near-ring. If \mathcal{U} is a nonzero semigroup ideal of \mathcal{N}, then the following assertions are equivalent:

(i) $[x, y] \in Z(\mathcal{N})$ for all $x, y \in \mathcal{U}$;

(ii) \mathcal{N} is a commutative ring.

Lemma 2.2 ([4, Theorem 2.10]). Let \mathcal{N} be a 2-torsion free 3-prime near-ring and \mathcal{U} be a nonzero semigroup ideal. If $u \circ v \in Z(\mathcal{N})$ for all $u, v \in \mathcal{U}$, then \mathcal{N} is a commutative ring.

Lemma 2.3. Let \mathcal{N} be a 3-prime near-ring and \mathcal{U} be a nonzero semigroup ideal of \mathcal{N}.

(i) [3, Lemma 1.5] If $\mathcal{U} \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring.

(ii) [3, Lemma 1.4(i)] If $x, y \in \mathcal{N}$ and $x \circty = \{0\}$, then $x = 0$ or $y = 0$.

(iii) [3, Lemma 1.3(i)] If x is an element of \mathcal{N} such that $\mathcal{U}x = \{0\}$ (resp. $x \circty = \{0\}$), then $x = 0$.

(iv) If z centralizes a nonzero semigroup ideal \mathcal{U}, then $z \in Z(\mathcal{N})$.

Lemma 2.4. Let \mathcal{N} be a near-ring and \mathcal{d} an additive map.

(i) If \mathcal{d} is a $(1, \alpha)$-derivation associated with a map α, then \mathcal{N} satisfies the following property:

$$
(d(x)y + \alpha(x)d(y))z = d(x)yz + \alpha(x)d(y)z + \alpha(x)\alpha(y)d(z) - \alpha(xy)d(z)
$$

for all $x, y, z \in \mathcal{N}$.
(ii) If d is an $(\alpha, 1)$-derivation, then N satisfies the following relation:
\[
(d(x)\alpha(y) + xd(y))\alpha(t) = d(x)\alpha(yt) + xd(y)\alpha(t)
\]
for all $t, x, y \in N$.

Proof. (i) We have
\[
d((xy)z) = d(xy)z + \alpha(xy)d(z)
\]
\[
= (d(x)y + \alpha(x)d(y))z + \alpha(xy)d(z)
\]
for all $x, y, z \in N$.

Also
\[
d(xyz) = d(xy)z + \alpha(x)d(yz)
\]
\[
= d(xyz) + \alpha(x)d(yz) + \alpha(x)\alpha(y)d(z)
\]
for all $x, y, z \in N$.

Combining the above two equalities, we find that
\[
(d(x)y + \alpha(x)d(y))z + \alpha(xy)d(z) = d(xyz) + \alpha(x)d(yz) + \alpha(x)\alpha(y)d(z)
\]
for all $x, y, z \in N$, which gives the required result.

(ii) Using the same proof of [10, Lemma 2.1], we find the required result. \hfill \Box

Lemma 2.5. Let N be a 3-prime near-ring and U be a nonzero semigroup ideal of N. If N admits a nonzero $(1, \alpha)$-derivation d associated with a map α, the following properties are satisfied:

(i) If $d(U) = \{0\}$, then $d = 0$.

(ii) If $ad(U) = \{0\}$, $a \in N$ and $\alpha(U) = U$, then $a = 0$.

(iii) If $d(U)a = \{0\}$, $a \in N$ and $\alpha(xy) = \alpha(x)\alpha(y)$ for all $x, y \in U$, then $a = 0$.

Proof. (i) Suppose that $d(U) = \{0\}$. Then
\[
0 = d(mnu)
\]
\[
= d(m)nu + \alpha(m)d(nu)
\]
\[
= d(m)nu \quad \text{for all } u \in U, m \in N,
\]
which implies that $d(m)Nu = \{0\}$ for all $u \in U, m \in N$. But N is 3-prime and $U \neq \{0\}$, then $d = 0$.

(ii) If $ad(U) = \{0\}$ and $a \in N$, then $ad(xy) = 0$ for all $x, y \in U$. This implies that $ad(x)\alpha(xy)d(y) = 0$ for all $x, y \in U$, and hence $a\alpha(x)d(y) = 0$ for all $x, y \in U$. But $\alpha(U) = U$, then $a\alpha(Ud)(y) = \{0\}$ for all $y \in U$. Using (i) and Lemma 2.3(ii), we obtain $a = 0$.

(iii) If $d(U)a = \{0\}$, then $d(xy)a = 0$ for all $x, y \in U$. By Lemma 2.4, we get $d(xy)a + \alpha(x)d(y)a + \alpha(x)\alpha(y)d(a) - \alpha(xy)d(a) = 0$ for all $x, y \in U$. Using the given hypothesis, we find that $d(xy)a = 0$ for all $x, y \in U$, i.e., $d(U)a = \{0\}$ for all $x \in U$. Since $d \neq 0$, we arrive at $a = 0$. \hfill \Box
3. Main results

In [5], H. E. Bell and G. Mason proved that a 3-prime near-ring \(N \) must be commutative if it admits a derivation \(d \) such that \(d(N) \subseteq Z(N) \). This result was generalized by the authors in [6], [10]. They replaced the derivation by a semiderivation or a two sided \(\alpha \)-derivation where \(\alpha \) is an homomorphism. Our objective in the following theorem is to generalize this result by treating the cases of \((1, \alpha) \)-derivations, \((\alpha, 1) \)-derivations and two sided \(\alpha \)-derivations where \(\alpha \) is an additive map.

Theorem 3.1. Let \(N \) be a 3-prime near-ring. If \(N \) admits a nonzero map \(d \) such that \(d(N) \subseteq Z(N) \), then \(N \) is a commutative ring if \(d \) has one of the following properties:

(i) \(d \) is a \((1, \alpha)\)-derivation associated with an additive map \(\alpha \).

(ii) \(d \) is a \((\alpha, 1)\)-derivation associated with an additive map \(\alpha \).

(iii) \(d \) is a two sided \(\alpha \)-derivation associated with an additive map \(\alpha \).

Proof. (i) Using our assumptions, we have \(zd(xy) = d(xy)z \) and \(d(z)d(xy) = d(xy)d(z) \) for all \(x, y, z \in N \). By Lemma 2.4, we obtain

\[
zd(x)y + z\alpha(x)d(y) = d(xy)z + \alpha(x)d(y)z + \alpha(x)\alpha(y)d(z) - \alpha(xy)d(z)
\]

and

\[
d(z)d(xy) + d(z)\alpha(x)d(y) = d(xy)d(z) + \alpha(x)d(y)d(z) + \alpha(x)\alpha(y)d^2(z) - \alpha(xy)d^2(z).
\]

Since \(d^2(z) = d(d(z)) \in Z(N) \), (3.2) becomes

\[
d^2(z)N(\alpha(xy) - \alpha(x)\alpha(y)) = \{0\} \quad \text{for all } x, y, z \in N.
\]

Since \(N \) is 3-prime, we have

\[
d^2(z) = 0 \quad \text{or} \quad \alpha(xy) = \alpha(x)\alpha(y) \quad \text{for all } x, y, z \in N.
\]

Assume that \(\alpha(xy) = \alpha(x)\alpha(y) \) for all \(x, y \in N \). For \(z = y \), (3.1) implies \(d(y)N[\alpha(x), y] = \{0\} \) for all \(x, y \in N \). Using \(N \) is 3-prime, we obtain \(d(y) = 0 \) or \(y\alpha(x) = \alpha(x)y \) for all \(x, y \in N \). The last two cases give the following equation

\[
d(x)N[y, z] = \{0\} \quad \text{for all } x, y, z \in N.
\]

Since \(N \) is 3-prime, for each \(y \in N \), either \(y \) centralizes \(N \) or \(d(N) = \{0\} \); and by Lemma 2.3(iv) together with Lemma 2.5(i), we conclude that \(N \) is a commutative ring.

Suppose that \(d^2(z) = 0 \) for all \(z \in N \). We have

\[
0 = d^2(xy) = d(d(x)y + \alpha(x)d(y)) = \alpha(d(x)) + d(\alpha(x))d(y) \quad \text{for all } x, y \in N,
\]
this implies that \((\alpha(d(x)) + d(\alpha(x)))d(y) = 0\) for all \(x, y \in \mathcal{N}\). Replacing \(y\) by \(yt\) in the preceding equation and using it again, we arrive at
\[
d(y)\mathcal{N}(\alpha(d(x)) + d(\alpha(x))) = \{0\} \quad \text{for all } x, y \in \mathcal{N}.
\]
By 3-primeness of \(\mathcal{N}\) and \(d \neq 0\), we obtain
\[
\alpha(d(x)) + d(\alpha(x)) = 0 \quad \text{for all } x \in \mathcal{N}.
\] (3.5)

Using our hypothesis, we have \(d(xd(y)) = d(d(y)x)\) for all \(x, y \in \mathcal{N}\). By the definition of \(d\), we get
\[
d(x)d(y) + \alpha(x)d^2(y) = d^2(y)x + \alpha(d(y))d(x) \quad \text{for all } x, y \in \mathcal{N},
\]
which can be rewritten as
\[
(\alpha(d(y)) - d(y))d(x) = 0 \quad \text{for all } x, y \in \mathcal{N}.
\]
From the above, one can easily see that
\[
\alpha(d(y)) = d(y) \quad \text{for all } y \in \mathcal{N}.
\] (3.6)

Using (3.5) and (3.6), we obtain
\[
d(x) + d(\alpha(x)) = 0 \quad \text{for all } x \in \mathcal{N}.
\] (3.7)

Taking \(d(u)\) instead of \(y\) in (3.1), we find that
\[
(\alpha(xd(u)) - \alpha(x)d(u))d(z) = 0 \quad \text{for all } x, u, z \in \mathcal{N}.
\]
Which implies that
\[
\alpha(xd(u)) = \alpha(x)d(u) \quad \text{for all } x, u \in \mathcal{N}.
\] (3.8)

Using (3.6) with the definition of \(d\), we get
\[
\alpha(d(x)y + d(x)d(y)) = d(x)y + \alpha(x)d(y) \quad \text{for all } x, y \in \mathcal{N}.
\] (3.9)

Since \(\alpha\) is an additive map, using the fact that \(d(\mathcal{N}) \subseteq Z(\mathcal{N})\) and (3.8), we arrive at
\[
d(x)\alpha(y) + \alpha^2(x)d(y) = d(x)y + \alpha(x)d(y) \quad \text{for all } x, y \in \mathcal{N}.
\] (3.10)

Setting \(x = y\) in (3.10) and using our hypothesis, we obviously get
\[
(\alpha^2(x) - x)\mathcal{N}d(x) = \{0\} \quad \text{for all } x \in \mathcal{N}.
\] (3.11)

Since \(\mathcal{N}\) is 3-prime, by (3.11) we can easily find that
\[
\alpha^2 = id_\mathcal{N} \text{ or } d(x) = 0 \quad \text{for all } x \in \mathcal{N}.
\] (3.12)

Suppose there exists an element \(u \in \mathcal{N}\) such that \(d(u) = 0\) and writing \(u\) instead of \(y\) in (3.10), we find that \(d(x)\alpha(u) = d(x)u\) for all \(x \in \mathcal{N}\) which forces that
\[
d(\mathcal{N})\mathcal{N}(\alpha(u) - u) = \{0\}.
\] (3.13)
Since \(d \neq 0 \) and \(\mathcal{N} \) is 3-prime, we conclude that \(\alpha(u) = u \) so that \(\alpha^2(u) = \alpha(u) = u \). In this case, (3.12) forces that \(\alpha^2 = id_{\mathcal{N}} \). Using Lemma 2.4, we get

\[
(3.14) \quad \alpha(z)d(x)\alpha(y)+\alpha(z)xd(y) = d(x)\alpha(yz)+xd(y)\alpha(z) \quad \text{for all } x, y, z \in \mathcal{N}.
\]

For \(z = \alpha(x) \), (3.14) becomes

\[
(3.15) \quad d(x)\mathcal{N}(\alpha(y\alpha(x)) - x\alpha(y)) = \{0\} \quad \text{for all } x, y \in \mathcal{N}.
\]

Since \(\mathcal{N} \) is 3-prime, either \(d(x) = 0 \) or \(\alpha(y\alpha(x)) = x\alpha(y) \) for all \(x, y \in \mathcal{N} \).

Suppose there exists \(x_0 \in \mathcal{N} \) such that \(d(x_0) = 0 \). By (3.14), we arrive at \(d(y)\mathcal{N}[x_0, \alpha(z)] = \{0\} \) for all \(y, z \in \mathcal{N} \). Replacing \(z \) by \(\alpha(u) \) and using the 3-primeness of \(\mathcal{N} \) and \(d \neq 0 \), we get \(x_0u = ux_0 \) for all \(u \in \mathcal{N} \).

If there exists \(x_0 \in \mathcal{N} \) such that \(\alpha(y\alpha(x_0)) = x_0\alpha(y) \) for all \(y \in \mathcal{N} \). Replace \(z \) by \(\alpha(x_0) \) in (3.14), we get \(d(y)\mathcal{N}[x_0x - xx_0] = \{0\} \) for all \(x, y \in \mathcal{N} \). Since \(\mathcal{N} \) is 3-prime and \(d \neq 0 \), we obtain \(x_0x = xx_0 \) for all \(x \in \mathcal{N} \). In both cases, we conclude that \(x \) centralizes \(\mathcal{N} \) which forces that \(\mathcal{N} \) is a commutative ring by Lemma 2.3(iv).

(ii) Assume that \(d(xy) = d(x)\alpha(y) + xd(y) \) for all \(x, y \in \mathcal{N} \). By hypothesis, we have \(d(xy) = \alpha(y)d(x) + d(y)x \) for all \(x, y \in \mathcal{N} \). Calculating \(d(x(y + y)) \) in two different ways, we obtain

\[
d(x)\alpha(y) + xd(y) = xd(y) + d(x)\alpha(y)
\]

\[
= d(y)x + \alpha(y)d(x) \quad \text{for all } x, y \in \mathcal{N}.
\]

From the last expression, we remark that \(d \) plays a role of a \((1, \alpha)\)-derivation, in this case, using the same proof of (i), we find that \(\mathcal{N} \) is a commutative ring.

(iii) It is clear that if \(d \) is a two sided \(\alpha \)-derivation, then \(d \) is both a \((1, \alpha)\)-derivation and an \((\alpha, 1)\)-derivation, which proves that \(\mathcal{N} \) is a commutative ring by (i) and (ii).

\(\square \)

In the following, we study the commutativity of a near-ring \(\mathcal{N} \) admitting nonzero two sided \(\alpha \)-derivations \((1, \alpha)\)-derivations \(d \) satisfying the condition \(d(xy) = d(xy) \) \((d(xy) = -d(yx)) \) for all \(x, y \in \mathcal{N} \). These results have been demonstrated by several authors in cases the derivations, semiderivations and two sided \(\alpha \)-derivations on 3-prime near-rings for more details see the following references [2], [3], [5], [6] and [10]. Our goal in the next part is to generalize these results in the case of \((1, \alpha)\)-derivations and two sided \(\alpha \)-derivations where \(\alpha \) is an additive map instead of a homomorphism.

Theorem 3.2. Let \(\mathcal{N} \) be a 3-prime near-ring and \(\mathcal{U} \) be a nonzero semigroup of \(\mathcal{N} \). If \(\mathcal{N} \) admits a nonzero map \(d \) such that \(d([x, y]) = 0 \) for all \(x, y \in \mathcal{U} \), then \(\mathcal{N} \) is a commutative ring if \(d \) has one of the following properties:

(i) \(d \) is a \((1, \alpha)\)-derivation associated with a map \(\alpha \).

(ii) \(d \) is a two sided \(\alpha \)-derivation associated with a map \(\alpha \).
Proof. (i) By our assumptions, we have \(d([x, y]) = 0 \) for all \(x, y \in \mathcal{U} \). Replacing \(y \) by \(xy \), then
\[
0 = d([x, xy]) = d(x)[x, y] + \alpha(x)d([x, y]) = d(x)[x, y] \quad \text{for all } x, y \in \mathcal{U}
\]
which implies that \(d(x)xy = d(x)yx \) for all \(x, y \in \mathcal{U} \). Taking \(yz \) instead of \(y \) where \(z \in \mathcal{N} \), we obtain \(d(x)\mathcal{U}[x, z] = \{0\} \) for all \(x \in \mathcal{U} \), \(z \in \mathcal{N} \). Invoking Lemma 2.3(ii), we get
\[
(3.16) \quad d(x) = 0 \quad \text{or} \quad x \in Z(\mathcal{N}) \quad \text{for all } x \in \mathcal{U}.
\]
Suppose there is an element \(x_0 \in \mathcal{U} \) such that \(d(x_0) = 0 \). Using the fact that \(d(x_0y) = d(yx_0) \) for all \(y \in \mathcal{U} \), we obtain \(\alpha(x_0)d(y) = d(y)x_0 \) for all \(y \in \mathcal{U} \).

Putting \(yt \) instead of \(y \) and using Lemma 2.4, we get
\[
\alpha(x_0)d(y)t + \alpha(x_0)\alpha(y)d(t) = d(y)t x_0
\]
which can be rewritten as
\[
d(y)x_0t + \alpha(x_0)\alpha(y)d(t) = d(y)t x_0 + \alpha(y)d(t)x_0 \quad \text{for all } y \in \mathcal{U}, t \in \mathcal{N}.
\]
Taking \(t = [u, v] \) in last equation, we obviously get \(d(y)(x_0[u, v] - [u, v]x_0) = 0 \) for all \(y, u, v \in \mathcal{U} \). Calculating the expression \(d(y)(x_0[u, v] - [u, v]x_0) \), one can easily find that \(d(y)(x_0[u, v] - [u, v]x_0) = d(y)(x_0[u, v] - [u, v]x_0) = 0 \) for all \(y, u, v \in \mathcal{U} \). Substituting \(yt \) for \(y \), where \(t \in \mathcal{U} \) in the above equation, we arrive at \(d(y)\mathcal{U}([u, v] - [u, v]x_0) = \{0\} \) for all \(y, u, v \in \mathcal{U} \). Lemma 2.5(ii) and Lemma 2.3(ii) for \(x_0[u, v] = [u, v]x_0 \) for all \(u, v \in \mathcal{U} \), in this case, \((3.16) \) forces that \(x[u, v] = [u, v]x \) for all \(x, u, v \in \mathcal{U} \). Replacing \(x \) by \(xt \) where \(t \in \mathcal{N} \) in the preceding equation and using it again, we arrive at \(\mathcal{U}([u, v], t) = \{0\} \) for all \(u, v \in \mathcal{U}, t \in \mathcal{N} \). By virtue of Lemma 2.3(iii), we obtain \([u, v] \in Z(\mathcal{N}) \) for all \(u, v \in \mathcal{U} \) which together with Lemma 2.1, yields that \(\mathcal{N} \) is a commutative ring.

(ii) It is clear that if \(d \) is a two sided \(\alpha \)-derivation, then \(d \) is a \((1, \alpha)\)-derivation, which proves that \(\mathcal{N} \) is a commutative ring by (i).

As an application of Theorem 3.1, we obtain the following corollaries.

Corollary 3.1. Let \(\mathcal{N} \) be a 2-torsion free 3-prime near-ring and \(d \) a nonzero derivation.

(i) [5, Theorem 2] If \(d(\mathcal{N}) \subseteq Z(\mathcal{N}) \), then \(\mathcal{N} \) is a commutative ring.

(ii) [2, Theorem 4.1] If \(d([x, y]) = 0 \) for all \(x, y \in \mathcal{N} \), then \(\mathcal{N} \) is a commutative ring.

Corollary 3.2. Let \(\mathcal{N} \) be a 2-torsion free 3-prime near-ring and \(d \) a nonzero semi-derivation.

(i) [6, Theorem 1] If \(d(\mathcal{N}) \subseteq Z(\mathcal{N}) \), then \(\mathcal{N} \) is a commutative ring.

(ii) [6, Theorem 2] If \(d([x, y]) = 0 \) for all \(x, y \in \mathcal{N} \), then \(\mathcal{N} \) is a commutative ring.
Corollary 3.3. Let N be a 2-torsion free 3-prime near-ring and d a nonzero two sided α-derivation.

(i) [10, Theorem 1] If $d(N) \subseteq Z(N)$, then N is a commutative ring.

(ii) [10, Theorem 2] If $d([x, y]) = 0$ for all $x, y \in N$, then N is a commutative ring.

The following example shows the necessity of the 3-primeness of N in the previous theorems.

Example 3.1. Let S be a 2-torsion free near-ring. Let us define N and $d, \alpha : N \to N$ by:

$$N = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & y \\ 0 & 0 & 0 \end{pmatrix} \middle| x, y \in S \right\}.$$

$$d \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & y \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad \alpha \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & y \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & y \\ 0 & 0 & 0 \end{pmatrix}.$$

It is clear that N is not a 3-prime near-ring and d is a nonzero two sided α-derivation associated with an additive map α satisfying the following properties:

(i) $d(N) \subseteq Z(N)$, (ii) $d([A, B]) = 0$ for all $A, B \in N$, but, since the addition in N is not commutative, N cannot be a commutative ring.

The conclusion of Theorem 3.2 no remains valid if we replace the product $[x, y]$ by $x \circ y$, provided that N is 2-torsion free. In fact, we obtain the following result.

Theorem 3.3. Let N be a 2-torsion free 3-prime near-ring and U be a nonzero semigroup ideal of N. Then there exists no nonzero map d on N such that $d(x \circ y) = 0$ for all $x, y \in U$ in the following cases:

(i) $d(N) \subseteq Z(N)$, (ii) $d([A, B]) = 0$ for all $A, B \in N$.

Proof. (i) Suppose that d is a $(1, \alpha)$-derivation associated with an additive map α such that $d(x \circ y) = 0$ for all $x, y \in U$. Replacing y by xy, then

$$0 = d(x \circ xy) = d(x)(x \circ y) + \alpha(x)d(x \circ y) = d(x)(x \circ y) \quad \text{for all}\ x, y \in U$$

which implies that $d(x)xy = -d(x)yx$ for all $x, y \in U$. Taking yz instead of y where $z \in N$, we obtain $d(x)U(-z(-x) + (-x)z) = \{0\}$ for all $x \in U, z \in N$.

Using Lemma 2.3(ii), we get

$$d(x) = 0 \quad \text{or} -x \in Z(N) \quad \text{for all}\ x \in U.$$

(3.17)
Suppose there exists an element $x_0 \in U$ such that $-x_0 \in Z(N)$. We have

\[
0 = -d(x_0 \circ x_0) \\
= d(-x_0 \circ x_0) \\
= d(2(-x_0)x_0).
\]

By the 2-torsion freeness of N, we get $d((-x_0)x_0) = d(x_0(-x_0)) = 0$. On the other hand, we have

\[
0 = d((x_0 \circ x_0)(-x_0)) \\
= 2d((-x_0)x_0^2) \\
= d((x_0x_0)(-x_0)) \\
= d(x_0x_0(-x_0) + \alpha(x_0)d(x_0(-x_0)) \\
= d(x_0)x_0(-x_0)
\]

which implies that $d(x_0)x_0N(-x_0) = \{0\}$. In light of 3-primeness of N, we conclude that $d(x_0)x_0 = 0 = d(x_0)(-x_0)$ and $d(x_0)N(-x_0) = \{0\}$. By the 3-primeness of N, we obtain $d(x_0) = 0$. In all cases (3.17) becomes $d(x) = 0$ for all $x \in U$ which is a contradiction with Lemma 2.5(i).

(ii) It is clear that if d is a two sided α-derivation, then d is a $(1, \alpha)$-derivation, which proves that N is a commutative ring by (i). \hfill \square

The following example shows the necessity of the 3-primeness of N in the previous theorems.

Example 3.2. Let S be a 2-torsion free near-ring. Let us define N, d and $\alpha : N \rightarrow N$ by:

\[
N = \left\{ \left(\begin{array}{ccc} 0 & 0 & x \\ 0 & 0 & y \\ 0 & 0 & 0 \end{array} \right) \mid x, y \in S \right\}
\]

\[
d \left(\begin{array}{ccc} 0 & 0 & x \\ 0 & 0 & y \\ 0 & 0 & 0 \end{array} \right) = \left(\begin{array}{ccc} 0 & 0 & x \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) \quad \text{and} \quad \alpha \left(\begin{array}{ccc} 0 & 0 & x \\ 0 & 0 & y \\ 0 & 0 & 0 \end{array} \right) = \left(\begin{array}{ccc} 0 & 0 & y \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right).
\]

It is clear that N is a non 3-prime near-ring and d is a nonzero two sided α-derivation such that $d(A \circ B) = 0$ for all $A, B \in N$, but N is not a commutative ring because the addition is not commutative.

Example 3.3. Let $N = M_2(\mathbb{Z}_3)$ the noncommutative prime ring and d the nonzero map on N such that $d \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = \left(\begin{array}{cc} 0 & d-a \\ 0 & -d \end{array} \right)$. Taking $x = (1 \, 1)$ and $y = (0 \, 1)$. Then $d(x \circ y) = (0 \, 2) \neq 0$, which shows that the condition “$d(x \circ y) = 0$ for all $x, y \in N$” is necessary.
Example 3.4. Let $\mathcal{N} = \mathbb{Z}_2[x]$. Then \mathcal{N} is an integral domain which means that \mathcal{N} is a commutative prime ring. Also, we have $2\mathcal{N} = \{0\}$. If we take d to be the identical application on \mathcal{N} and $\alpha = 0$. Then d is a nonzero $(1, \alpha)$-derivation and also is a nonzero two sided α-derivation on \mathcal{N} and $d(p \circ q) = 2d(pq) = 0$ for all $p, q \in \mathcal{N}$. But \mathcal{N} is not 2-torsion free.

References

Abdelkarim Boua
Sidi Mohammed Ben Abdellah University
Polydisciplinary Faculty, LSI, Taza, Morocco
Email address: abdelkarimboua@yahoo.fr