DOI QR코드

DOI QR Code

CHARACTERIZATIONS OF STABILITY OF ABSTRACT DYNAMIC EQUATIONS ON TIME SCALES

  • Hamza, Alaa E. (Department of Mathematics Faculty of Science University of Jeddah) ;
  • Oraby, Karima M. (Department of Mathematics and Computer Science Faculty of Science Suez University)
  • 투고 : 2018.01.06
  • 심사 : 2018.10.15
  • 발행 : 2019.01.31

초록

In this paper, we investigate many types of stability, like (uniform stability, exponential stability and h-stability) of the first order dynamic equations of the form $$\{u^{\Delta}(t)=Au(t)+f(t),\;\;t{\in}{\mathbb{T}},\;t>t_0\\u(t_0)=x{\in}D(A),$$ and $$\{u^{\Delta}(t)=Au(t)+f(t,u),\;\;t{\in}{\mathbb{T}},\;t>t_0\\u(t_0)=x{\in}D(A),$$ in terms of the stability of the homogeneous equation $$\{u^{\Delta}(t)=Au(t),\;\;t{\in}{\mathbb{T}},\;t>t_0\\u(t_0)=x{\in}D(A),$$ where f is rd-continuous in $t{\in}{\mathbb{T}}$ and with values in a Banach space X, with f(t, 0) = 0, and A is the generator of a $C_0$-semigroup $\{T(t):t{\in}{\mathbb{T}}\}{\subset}L(X)$, the space of all bounded linear operators from X into itself. Here D(A) is the domain of A and ${\mathbb{T}}{\subseteq}{\mathbb{R}}^{{\geq}0}$ is a time scale which is an additive semigroup with property that $a-b{\in}{\mathbb{T}}$ for any $a,b{\in}{\mathbb{T}}$ such that a > b. Finally, we give illustrative examples.

키워드

참고문헌

  1. R. Agarwal, M. Bohner, D. O'Regan, and A. Peterson, Dynamic equations on time scales: a survey, J. Comput. Appl. Math. 141 (2002), no. 1-2, 1-26. https://doi.org/10.1016/S0377-0427(01)00432-0
  2. B. Aulbach and S. Hilger, A unified approach to continuous and discrete dynamics, in Qualitative theory of differential equations (Szeged, 1988), 37-56, Colloq. Math. Soc. Janos Bolyai, 53, North-Holland, Amsterdam, 1990.
  3. M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhauser Boston, Inc., Boston, MA, 2001.
  4. M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser, Besel, 2003.
  5. S. K. Choi, Y. H. Goo, and N. Koo, h-stability of dynamic equations on time scales with nonregressivity, Abstr. Appl. Anal. 2008 (2008), Art. ID 632473, 13 pp.
  6. S. K. Choi, D. M. Im, and N. Koo, Stability of linear dynamic systems on time scales, Adv. Difference Equ. 2008 (2008), Art. ID 670203, 12 pp.
  7. S. K. Choi and N. Koo, Stability of linear dynamic equations on time scales, Discrete Contin. Dyn. Syst. 2009, Dynamical systems, differential equations and applications. 7th AIMS Conference, suppl., 161-170.
  8. S. K. Choi, N. Koo, and D. M. Im, h-stability for linear dynamic equations on time scales, J. Math. Anal. Appl. 324 (2006), no. 1, 707-720. https://doi.org/10.1016/j.jmaa.2005.12.046
  9. J. J. DaCunha, Stability for time varying linear dynamic systems on time scales, J. Comput. Appl. Math. 176 (2005), no. 2, 381-410. https://doi.org/10.1016/j.cam.2004.07.026
  10. T. S. Doan, A. Kalauch, and S. Siegmund, Exponential stability of linear time-invariant systems on time scales, Nonlinear Dyn. Syst. Theory 9 (2009), no. 1, 37-50.
  11. N. H. Du and L. H. Tien, On the exponential stability of dynamic equations on time scales, J. Math. Anal. Appl. 331 (2007), no. 2, 1159-1174. https://doi.org/10.1016/j.jmaa.2006.09.033
  12. K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.
  13. A. E. Hamza and M. A. Al-Qubaty, On the exponential operator functions on time scales, Adv. Dyn. Syst. Appl. 7 (2012), no. 1, 57-80.
  14. A. E. Hamza and K. M. Oraby, Stability of abstract dynamic equations on time scales, Adv. Difference Equ. 143 (2012), 15 pp.
  15. A. E. Hamza and K. M. Oraby, Semigroups of operators and abstract dynamic equations on time scales, Appl. Math. Comput. 270 (2015), 334-348. https://doi.org/10.1016/j.amc.2015.07.110
  16. S. Hilger, Ein Masskettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD thesis, Universitat Wurzburg, 1988.
  17. S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math. 18 (1990), no. 1-2, 18-56. https://doi.org/10.1007/BF03323153
  18. A.-L. Liu, Boundedness and exponential stability of solutions to dynamic equations on time scales, Electron. J. Differential Equations 2007 (2007), No. 12, 14 pp.
  19. R. J. Marks, I. A. Gravagne, J. M. Davis, and J. J. Dacunha, Nonregressivity in switched linear circuits and mechanical systems, Math. Comput. Modelling 43 (2006), no. 11-12, 1383-1392. https://doi.org/10.1016/j.mcm.2005.08.007
  20. C.-L. Mihit, On uniform h-stability of evolution operators in Banach spaces, Theory Appl. Math. Comput. Sci. 6 (2016), no. 1, 19-27.
  21. B. B. Nasser, K. Boukerrioua, and M. A. Hammami, On the stability of perturbed time scale systems using integral inequalities, Appl. Sci. 16 (2014), 56-71.
  22. K. M. Oraby, Asymptotic Behavior of Solutions of Dynamic Equations on Time Scales, M.SC thesis, Cairo University, 2012.
  23. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.
  24. M. Pinto, Perturbations of asymptotically stable differential systems, Analysis 4 (1984), no. 1-2, 161-175. https://doi.org/10.1524/anly.1984.4.12.161
  25. C. Potzsche, S. Siegmund, and F. Wirth, A spectral characterization of exponential stability for linear time-invariant systems on time scales, Discrete Contin. Dyn. Syst. 9 (2003), no. 5, 1223-1241. https://doi.org/10.3934/dcds.2003.9.1223